

P - Ch 30V Fast Switching MOSFETs

Description

The RM4P30S6 is the high cell density trenched P-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications.

The RM4P30S6 meet the RoHS and Green Product requirement, with full function reliability approved.

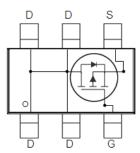
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology
- Halogen-free
 D(b) auffinitive
- P/N suffix V means AEC-Q101 qualified, e.g:RM4P30S6V

Product Summary

BVDSS	RDS ON	ID		
-30V	52mΩ	-3.9A		

Package Marking And Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity				
4P30	RM4P30S6	SOT-23-6	Ø180mm	8 mm	3000 units				


Absolute Maximum Ratings

Parameter	Symbol	•	Unit		
	3311100	10s	Steady State	Onit	
Drain-Source Voltage	V _{DS}	-30		V	
Gate-Source Voltage	V _{GS}	±20		V	
Continuous Drain Current, V _{GS} @ -10V ¹	I _D @T _A =25℃	-4.5	-3.9	А	
Continuous Drain Current, V _{GS} @ -10V ¹	I _D @T _A =70℃	-3.5	-3.1	А	
Pulsed Drain Current ²	Ідм	-20		А	
Total Power Dissipation ³	P _D @T _A =25℃	1.5	1.1	W	
Total Power Dissipation ³	P _D @T _A =70℃	0.94	0.73	W	
Storage Temperature Range	T _{STG}	-55	to 150	°C	
Operating Junction Temperature Range	TJ	-55	to 150	°C	

Thermal Data

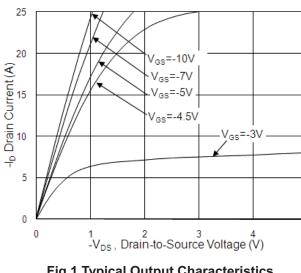
Parameter	Symbol	Туре	Мах	Unit
Thermal Resistance Junction Ambient ¹	Reja		110	°C /W
Thermal Resistance Junction-Ambient ¹ (t \leq 10s)	RθJA		85	°C /W
Thermal Resistance Junction-Case ¹	Rejc		70	°C/W

Pin Configuration

SOT-23-6 top view

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V , I _D =-250uA				V
Static Drain-Source On-Resistance ²	Rds(on)	V _{GS} =-10V , I _D =-3A		42	52	
Static Drain-Source On-Resistance-		V _{GS} =-4.5V , I _D =-1.5A		75	90	mΩ
Gate Threshold Voltage	V _{GS(th)}	V _{GS} =V _{DS} , I _D =-250uA	-1.2	-1.6	-2.5	V
Droin Source Lockage Current		V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1	
Drain-Source Leakage Current	IDSS	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	– uA
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
Forward Transconductance	gfs	V _{DS} =-5V , I _D =-3A		11		S
Total Gate Charge (-4.5V)	Qg			6.4	9.0	nC
Gate-Source Charge	Qgs	V _{DS} =-15V , V _{GS} =-4.5V , I _D =-3A		2.3	3.2	
Gate-Drain Charge	Q_{gd}			1.9	2.7	
Turn-On Delay Time	T _{d(on)}			2.8	5.6	
Rise Time				8.4	15.1	20
Turn-Off Delay Time	T _{d(off)}	D=-3A		39	78.0	ns
Fall Time	Tf			6	12.0	
Input Capacitance	Ciss			583	816	
Output Capacitance Coss		V _{DS} =-15V , V _{GS} =0V , f=1MHz		100	140	pF
Reverse Transfer Capacitance	Crss]		80	112	

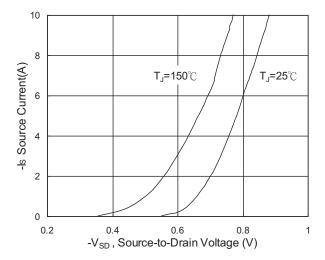
Electrical Characteristics (TJ=25 °C, unless otherwise noted)


Diode Characteristics

Parameter	Symbol	Test Condition	Min	Туре	Мах	Unit
Continuous Source Current ^{1,4}	ls	$V_G=V_D=0V$, Force Current			-2	А
Diode Forward Voltage ²	V _{SD}	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V
Reverse Recovery Time	trr	I⊧=-3A , dl/dt=100A/µs , Tյ=25℃		7.8		nS
Reverse Recovery Charge	Qrr	$11 - 3A$, $0/01 - 100A/\mu S$, $11 - 25 C$		2.5		nC

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.


2. The data tested by surface modified on a finite first board with 202 copper. 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2% 3. The power dissipation is limited by 150°C junction temperature 4. The data is theoretically the same as I_D and I_{DM}, in real applications , should be limited by total power dissipation.

RATING AND CHARACTERISTICS CURVES (RM4P30S6)

5

Fig.3 Source Drain Forward Characteristics

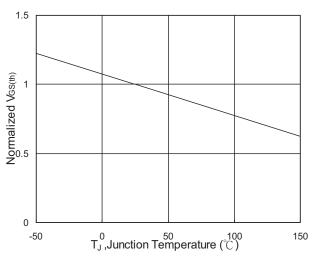


Fig.5 Normalized $V_{GS(th)}$ vs T_J

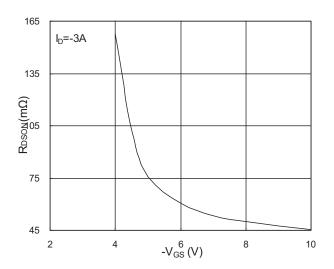


Fig.2 On-Resistance vs G-S Voltage

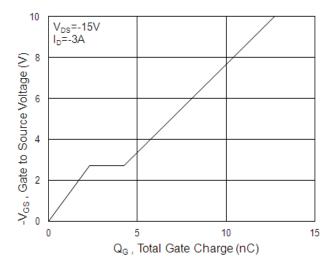


Fig.4 Gate-Charge Characteristics

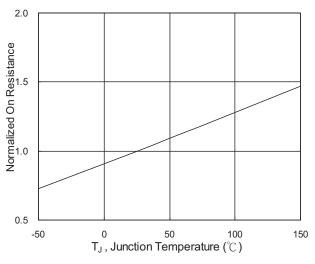
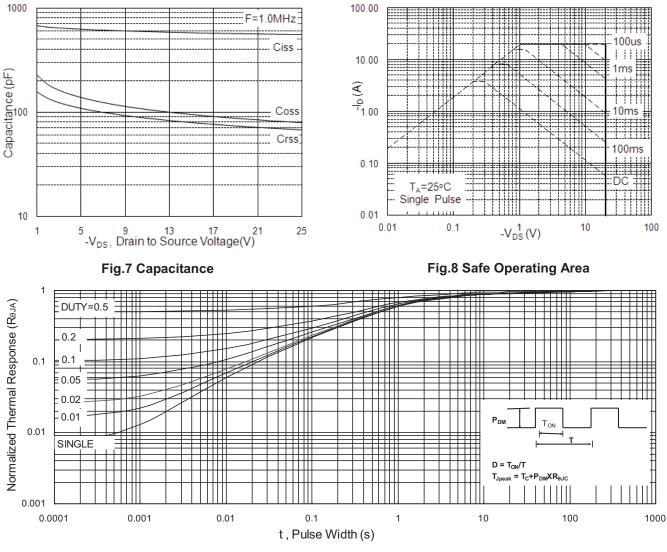



Fig.6 Normalized RDSON vs TJ

CRECTRON

RATING AND CHARACTERISTICS CURVES (RM4P30S6)

Fig.9 Normalized Maximum Transient Thermal Impedance

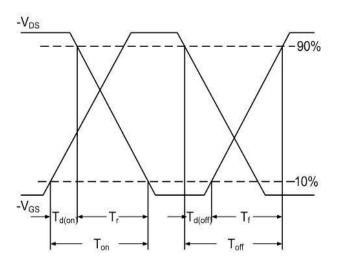


Fig.10 Switching Time Waveform

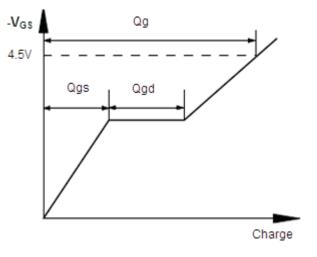
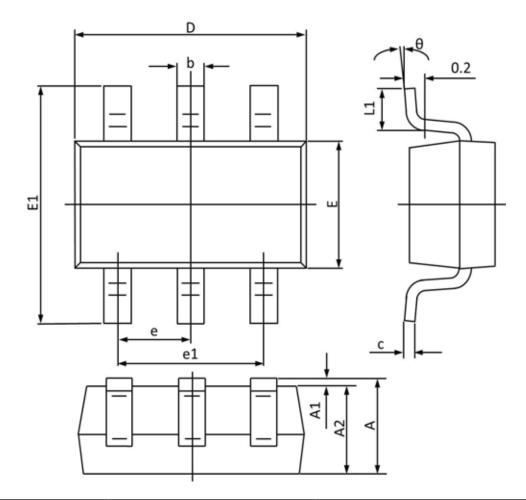



Fig.11 Gate Charge Waveform

SOT23-6 PACKAGE INFORMATION

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	MAX	MIN	MAX	MIN	
Α	1.450	-	0.057	-	
A1	0.100	0.000	0.004	0.000	
A2	1.300	1.050	0.051	0.041	
b	0.500	0.300	0.020	0.012	
c	0.200	0.100	0.008	0.004	
D	3.100	2.700	0.122	0.106	
E	1.800	1.400	0.071	0.055	
E1	3.000	2.600	0.118	0.102	
e	0.95	BSC	0.03	7BSC	
e1	2.000	1.800	0.079	0.071	
L1	0.600	0.300	0.024	0.012	
θ	10°	0 °	10°	0 °	

CRECTRON

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

