

December 1994

54F/74F14 Hex Inverter Schmitt Trigger

General Description

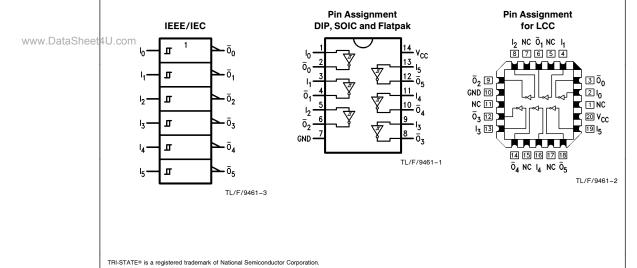
The 'F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totempole output. The Schmitt trigger uses positive feed back to

effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Features

- Guaranteed 4000V minimum ESD protection
- Standard Military Drawing
 - 5962-88752


Commercial	Military	Package Number	Package Description		
74F14PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line		
	54F14DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line		
74F14SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC		
74F14SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ		
	54F14FM (Note 2)	W14B	14-Lead Cerpack		
	54F14LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Note 1: Devices also available in 13" reel. Use Suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol

Connection Diagrams

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
I _n	Input Output	1.0/1.0 50/33.3	20 μA/-0.6 mA -1 mA/20 mA		

Function Table

Input	Output
Α	ō
L	Н
Н	L

H = HIGH Voltage Level
L = LOW Voltage Level

www.DataSheet4U.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{ll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } + 125^{\circ}\mbox{C} \\ \end{array}$

Junction Temperature under Bias -55°C to $+175^{\circ}\text{C}$

V_{CC} Pin Potential to

Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{CC} \\ \text{TRI-STATE} & \text{Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max)

twice the rated I_{OL} (mA)

ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

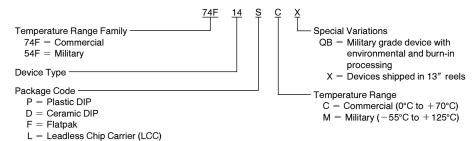
Free Air Ambient Temperature

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

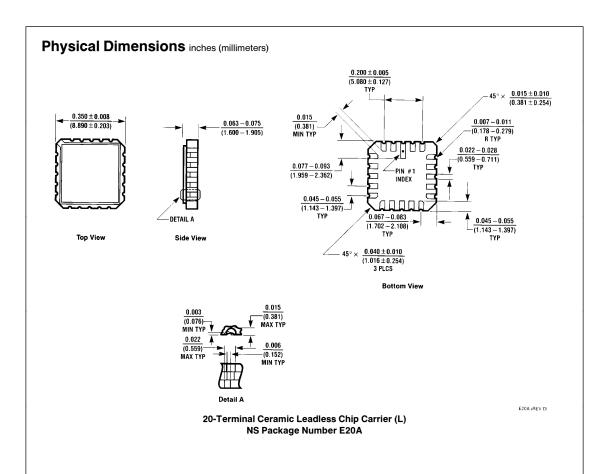
DC Electrical Characteristics

Symbol	Parameter .		54F/74F			Units	Vcc	Conditions	
Symbol			Min	Тур	Max	Units	V CC	Conditions	
V _{T+}	Positive-Going Threshold		1.5	1.7	2.0	V	5.0V		
V_{T-}	Negative-Going Threshold		0.7	0.9	1.1	V	5.0V		
ΔV_{T}	Hysteresis (V _{T+} -V _{T-})		0.4	0.8		V	5.0V		
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{\text{IN}} = -18 \text{mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
t4U !BV Im	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	V _{OUT} = V _{CC}	
V _{ID}	Input Leakage Test	74F	4.75			V	Max	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
lod	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CCH}	Power Supply Current				25	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current				25	mA	Max	$V_O = LOW$	

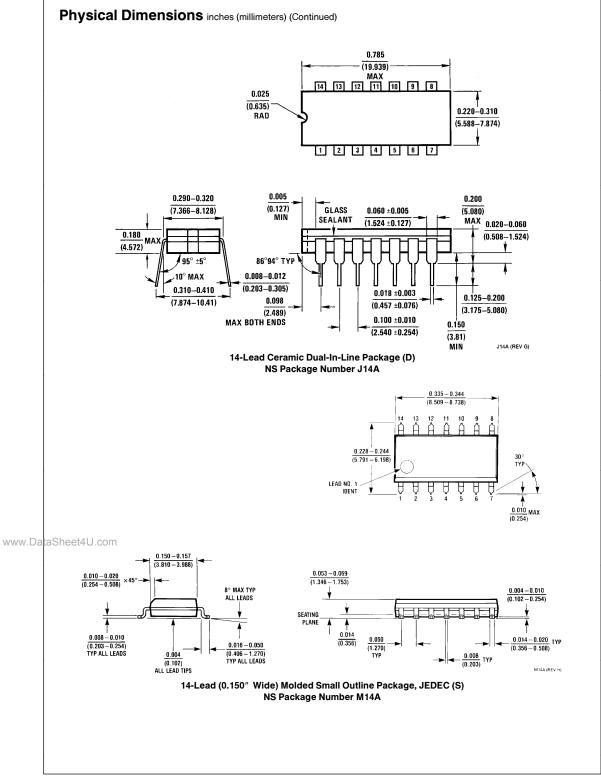

www.DataSheet

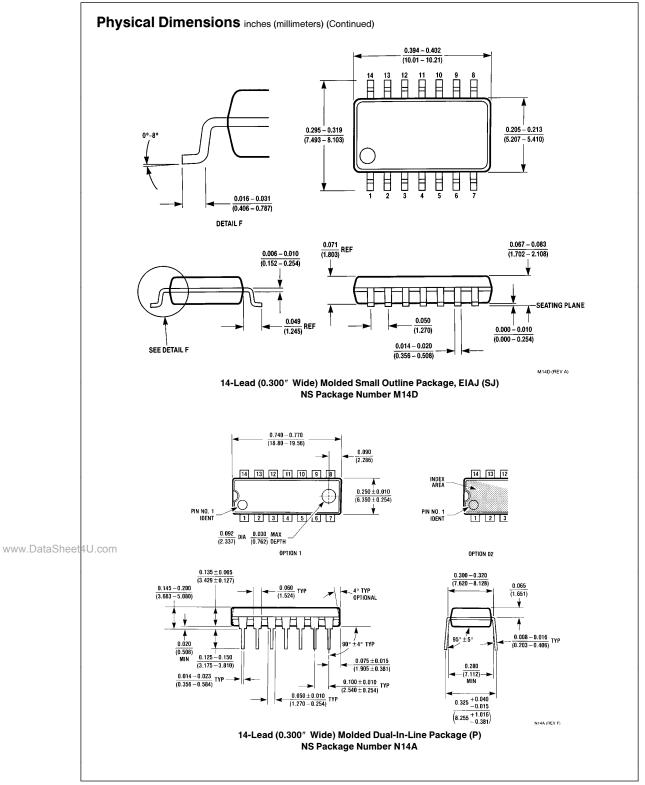
AC Electrical Characteristics

Symbol				5	4F	74F		
	Parameter			$ extsf{T}_{ extsf{A}}, extsf{V}_{ extsf{CC}} = extsf{Mil} \ extsf{C}_{ extsf{L}} = extsf{50 pF}$		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	4.0	10.5	4.0	13.0	4.0	11.5	
t _{PHL}	$I_n \rightarrow \overline{O}_n$	3.5	8.5	3.5	10.0	3.5	9.0	ns

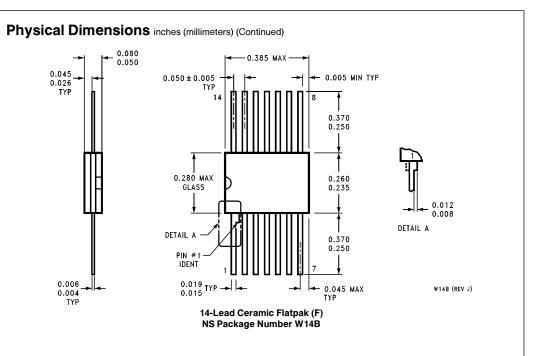

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:




S = Small Outline SOIC JEDEC SJ = Small Outline SOIC EIAJ

www.DataSheet4U.com



www.DataSheet4U.com

54F/74F14 Hex Inverter Schmitt Trigger

www.DataSheet4U.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghili, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998