

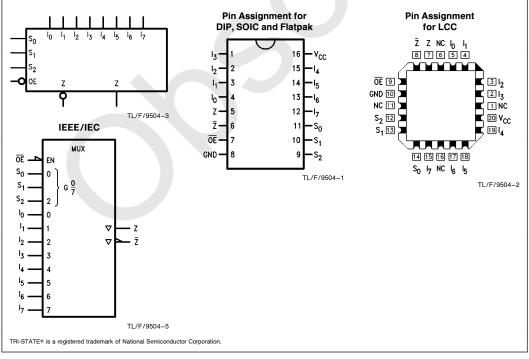
# 54F/74F251A 8-Input Multiplexer with TRI-STATE® Outputs

#### **General Description**

The 'F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

#### Features

- Multifunctional capability
- On-chip select logic decoding
- Inverting and non-inverting TRI-STATE outputs


| Commercial Military |                    | Package<br>Number | Package Description                               |  |  |  |  |
|---------------------|--------------------|-------------------|---------------------------------------------------|--|--|--|--|
| 74F251APC           |                    | N16E              | 16-Lead (0.300" Wide) Molded Dual-In-Line         |  |  |  |  |
|                     | 54F251ADM (Note 2) | J16A              | 16-Lead Ceramic Dual-In-Line                      |  |  |  |  |
| 74F251ASC (Note 1)  |                    | M16A              | 16-Lead (0.150" Wide) Molded Small Outline, JEDEC |  |  |  |  |
| 74F251ASJ (Note 1)  |                    | M16D              | 16-Lead (0.300" Wide) Molded Small Outline, EIAJ  |  |  |  |  |
|                     | 54F251AFM (Note 2) | W16A              | 16-Lead Cerpack                                   |  |  |  |  |
|                     | 54F251ALL (Note 2) | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C     |  |  |  |  |

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

# Logic Symbols

#### **Connection Diagrams**



© 1995 National Semiconductor Corporation TL/F/9504

RRD-B30M75/Printed in U. S. A.

54F/74F251A 8-Input Multiplexer with TRI-STATE Outputs

# Unit Loading/Fan Out

|                                   |                                            | 54F/74F          |                                                                                   |  |  |  |  |  |
|-----------------------------------|--------------------------------------------|------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| Pin Names                         | Description                                | U.L.<br>HIGH/LOW | Input I <sub>IH</sub> /I <sub>IL</sub><br>Output I <sub>OH</sub> /I <sub>OL</sub> |  |  |  |  |  |
| $\frac{S_0 - S_2}{\overline{OE}}$ | Select Inputs                              | 1.0/1.0          | 20 µA/−0.6 mA                                                                     |  |  |  |  |  |
| ŌĒ                                | TRI-STATE Output Enable Input (Active LOW) | 1.0/1.0          | 20 µA/−0.6 mA                                                                     |  |  |  |  |  |
| I <sub>0</sub> -I <sub>7</sub>    | Multiplexer Inputs                         | 1.0/1.0          | 20 µA/−0.6 mA                                                                     |  |  |  |  |  |
| Z                                 | TRI-STATE Multiplexer Output               | 150/40 (33.3)    | -3 mA/24 mA (20 mA)                                                               |  |  |  |  |  |
| Z                                 | Complementary TRI-STATE Multiplexer Output | 150/40 (33.3)    | -3 mA/24 mA (20 mA)                                                               |  |  |  |  |  |

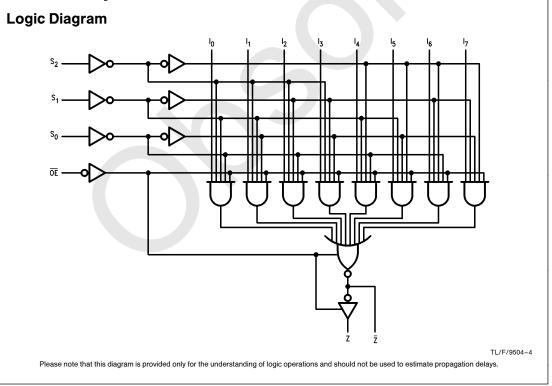
### **Functional Description**

z

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>. Both assertion and negation outputs are provided. The Output Enable input  $\overline{(OE)}$  is active LOW. When it is activated, the logic function provided at the output is:

$$\begin{split} = &\overline{\mathsf{OE}} \bullet (\mathsf{I}_0 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_1 \bullet \mathsf{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \\ & \mathsf{I}_2 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_3 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \\ & \mathsf{I}_4 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_5 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \\ & \mathsf{I}_6 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2 + \mathsf{I}_7 \bullet \mathbb{S}_0 \bullet \mathbb{S}_1 \bullet \mathbb{S}_2) \end{split}$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.


# **Truth Table**

|    | Inp            | Outputs        |                |                |                |
|----|----------------|----------------|----------------|----------------|----------------|
| ŌĒ | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | Ī              | z              |
| н  | х              | х              | Х              | Z              | Z              |
| L  | L              | L              | L              | Īo             | Io             |
| L  | L              | L              | н              | Ī              | l1             |
| L  | L              | н              | L              | Ī2             | l <sub>2</sub> |
| L  | L              | н              | н              | Ī3             | I <sub>3</sub> |
| L  | н              | L              | L              | Ī4             | 14             |
| L  | н              | L              | Н              | Ī5             | I5             |
| L  | н              | Н              | L              | Ī <sub>6</sub> | I <sub>6</sub> |
| L  | н              | н              | Н              | Ī7             | ۱ <sub>7</sub> |

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance



# Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. + 15000 C+

| Storage Temperature                                              | -65°C to +150°C                    |
|------------------------------------------------------------------|------------------------------------|
| Ambient Temperature under Bias                                   | -55°C to +125°C                    |
| Junction Temperature under Bias<br>Plastic                       | −55°C to +175°C<br>−55°C to +150°C |
| V <sub>CC</sub> Pin Potential to<br>Ground Pin                   | -0.5V to +7.0V                     |
| Input Voltage (Note 2)                                           | -0.5V to $+7.0V$                   |
| Input Current (Note 2)                                           | -30 mA to $+5.0$ mA                |
| Voltage Applied to Output<br>in HIGH State (with $V_{CC} = 0V$ ) |                                    |
| Standard Output                                                  | -0.5V to V <sub>CC</sub>           |
| TRI-STATE Output                                                 | -0.5V to +5.5V                     |
|                                                                  |                                    |

### Current Applied to Output

Commercial

Supply Voltage Military

Commercial

in LOW State (Max)

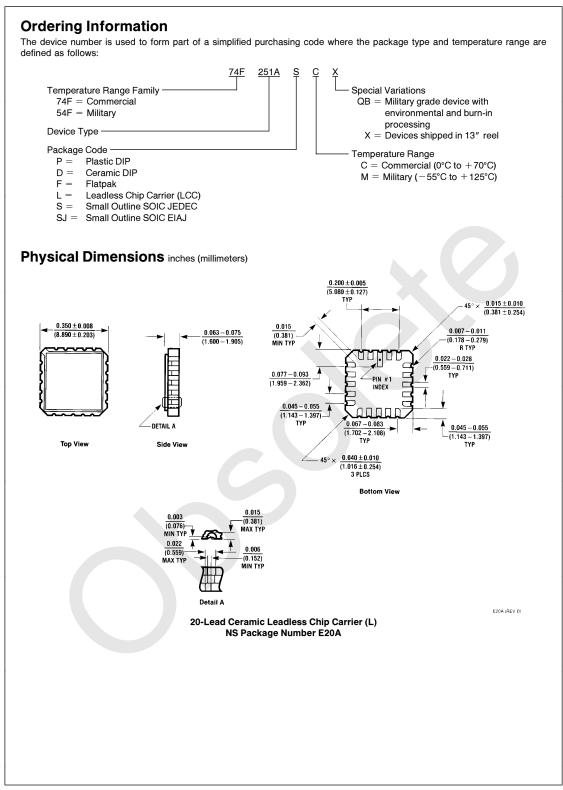
twice the rated I<sub>OL</sub> (mA)

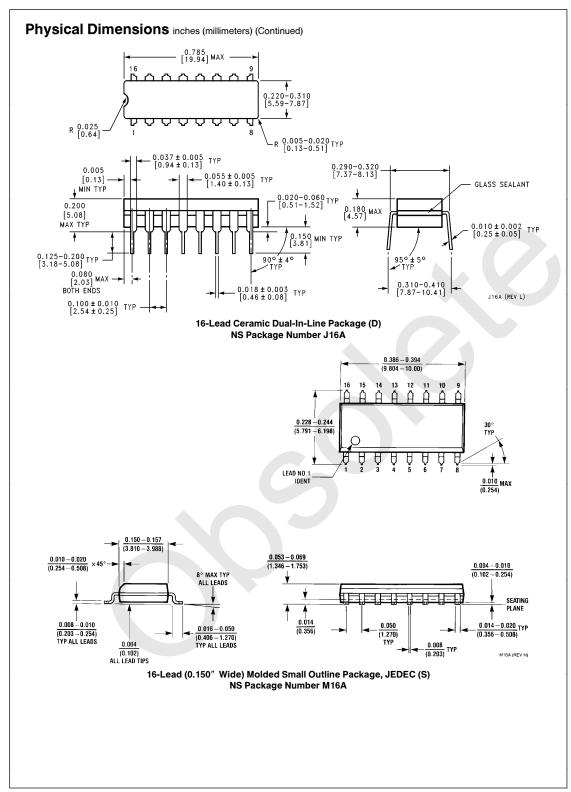
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

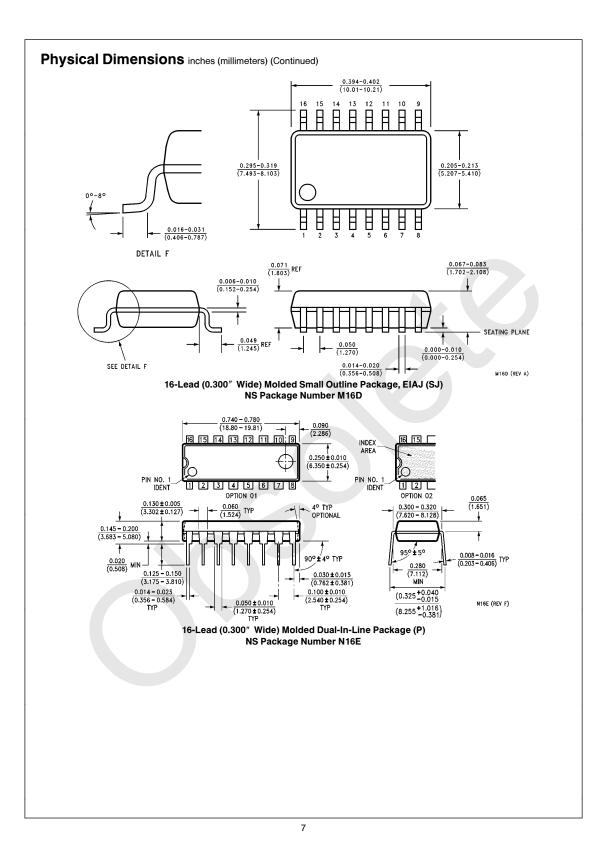
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

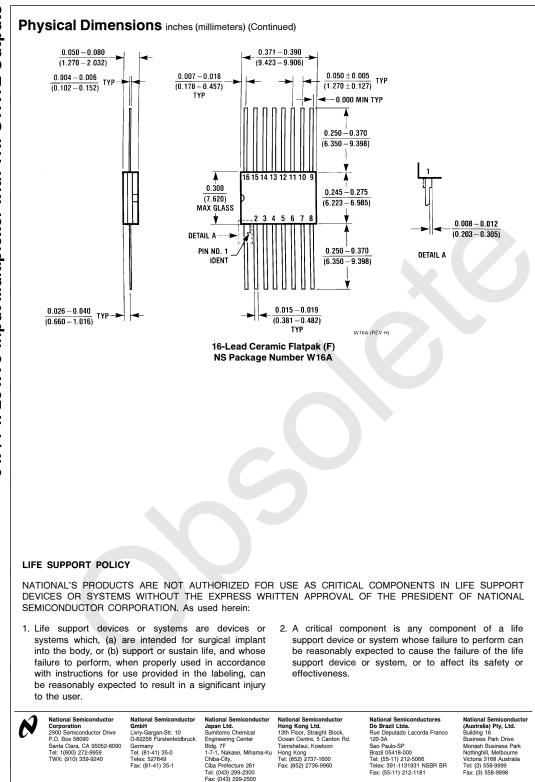
# **Recommended Operating** Conditions

Free Air Ambient Temperature Military


-55°C to +125°C  $0^{\circ}C$  to  $\,+\,70^{\circ}C$ 


+4.5V to +5.5V  $+\,4.5V$  to  $\,+\,5.5V$ 


#### **DC Electrical Characteristics**


| Symbol           | Parameter                            |                                                                                                                                                              | 54F/74F                                |    |             | Units | Vcc  | Conditions                                                                                                                                                           |  |
|------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|-------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| oyinibor         | Input HIGH Voltage                   |                                                                                                                                                              | Min Typ                                |    | Max         | Units | •00  | Conditions                                                                                                                                                           |  |
| VIH              |                                      |                                                                                                                                                              | 2.0                                    |    |             | V     |      | Recognized as a HIGH Signa                                                                                                                                           |  |
| VIL              | Input LOW Voltage                    |                                                                                                                                                              |                                        |    | 0.8         | V     |      | Recognized as a LOW Signa                                                                                                                                            |  |
| V <sub>CD</sub>  | Input Clamp Diode Volta              | age                                                                                                                                                          |                                        |    | -1.2        | V     | Min  | $I_{IN} = -18 \text{ mA}$                                                                                                                                            |  |
| V <sub>OH</sub>  | Output HIGH<br>Voltage               | 54F 10% V <sub>CC</sub><br>54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 5% V <sub>CC</sub><br>74F 5% V <sub>CC</sub> | 2.5<br>2.4<br>2.5<br>2.4<br>2.7<br>2.7 |    |             | v     | Min  | $I_{OH} = -1 \text{ mA}$<br>$I_{OH} = -3 \text{ mA}$<br>$I_{OH} = -1 \text{ mA}$<br>$I_{OH} = -3 \text{ mA}$<br>$I_{OH} = -1 \text{ mA}$<br>$I_{OH} = -3 \text{ mA}$ |  |
| V <sub>OL</sub>  | Output LOW<br>Voltage                | 54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub>                                                                                                           |                                        |    | 0.5<br>0.5  | v     | Min  | $I_{OL} = 20 \text{ mA}$<br>$I_{OL} = 24 \text{ mA}$                                                                                                                 |  |
| IIH              | Input HIGH<br>Current                | 54F<br>74F                                                                                                                                                   |                                        |    | 20.0<br>5.0 | μΑ    | Max  | $V_{IN} = 2.7V$                                                                                                                                                      |  |
| I <sub>BVI</sub> | Input HIGH Current<br>Breakdown Test | 54F<br>74F                                                                                                                                                   |                                        |    | 100<br>7.0  | μΑ    | Max  | $V_{IN} = 7.0V$                                                                                                                                                      |  |
| ICEX             | Output HIGH<br>Leakage Current       | 54F<br>74F                                                                                                                                                   |                                        |    | 250<br>50   | μΑ    | Max  | $V_{OUT} = V_{CC}$                                                                                                                                                   |  |
| V <sub>ID</sub>  | Input Leakage<br>Test                | 74F                                                                                                                                                          | 4.75                                   |    |             | V     | 0.0  | $I_{ID} = 1.9 \mu A$<br>All Other Pins Grounded                                                                                                                      |  |
| I <sub>OD</sub>  | Output Leakage<br>Circuit Current    | 74F                                                                                                                                                          |                                        |    | 3.75        | μΑ    | 0.0  | V <sub>IOD</sub> = 150 mV<br>All Other Pins Grounded                                                                                                                 |  |
| Ι <sub>ΙL</sub>  | Input LOW Current                    |                                                                                                                                                              |                                        |    | -0.6        | mA    | Max  | $V_{IN} = 0.5V$                                                                                                                                                      |  |
| I <sub>OZH</sub> | Output Leakage Curren                | t                                                                                                                                                            |                                        |    | 50          | μΑ    | Max  | $V_{OUT} = 2.7V$                                                                                                                                                     |  |
| I <sub>OZL</sub> | Output Leakage Current               |                                                                                                                                                              |                                        |    | -50         | μΑ    | Max  | $V_{OUT} = 0.5V$                                                                                                                                                     |  |
| l <sub>OS</sub>  | Output Short-Circuit Current         |                                                                                                                                                              | -60                                    |    | -150        | mA    | Max  | $V_{OUT} = 0V$                                                                                                                                                       |  |
| I <sub>ZZ</sub>  | Bus Drainage Test                    |                                                                                                                                                              |                                        |    | 500         | μΑ    | 0.0V | $V_{OUT} = 5.25V$                                                                                                                                                    |  |
| I <sub>CCL</sub> | Power Supply Current                 |                                                                                                                                                              |                                        | 15 | 22          | mA    | Max  | $V_{O} = LOW$                                                                                                                                                        |  |
| I <sub>CCZ</sub> | Power Supply Current                 |                                                                                                                                                              |                                        | 16 | 24          | mA    | Max  | V <sub>O</sub> = HIGH Z                                                                                                                                              |  |

|                                      |                                                       | $74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50  pF$ |            |             | 54F<br>T <sub>A</sub> , V <sub>CC</sub> = Mil<br>C <sub>L</sub> = 50 pF |              | 74F<br>T <sub>A</sub> , V <sub>CC</sub> = Com<br>C <sub>L</sub> = 50 pF |             |       |
|--------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------|-------------|-------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|-------------|-------|
| Symbol                               | Parameter                                             |                                                                   |            |             |                                                                         |              |                                                                         |             | Units |
|                                      |                                                       | Min                                                               | Тур        | Max         | Min                                                                     | Max          | Min                                                                     | Мах         | ]     |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay $S_n$ to $\overline{Z}$             | 3.5<br>3.2                                                        | 6.0<br>5.0 | 9.0<br>7.5  | 3.5<br>3.2                                                              | 11.5<br>8.0  | 3.5<br>3.2                                                              | 9.5<br>7.5  | ns    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>S <sub>n</sub> to Z              | 4.5<br>4.0                                                        | 7.5<br>6.0 | 10.5<br>8.5 | 3.5<br>3.0                                                              | 14.0<br>10.5 | 4.5<br>4.0                                                              | 12.5<br>9.0 | ns    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay $I_n$ to $\overline{Z}$             | 3.0<br>1.5                                                        | 5.0<br>2.5 | 6.5<br>4.0  | 2.5<br>1.5                                                              | 8.0<br>6.0   | 3.0<br>1.5                                                              | 7.0<br>5.0  | ns    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>I <sub>n</sub> to Z              | 3.5<br>3.5                                                        | 5.0<br>5.5 | 7.0<br>7.0  | 2.5<br>3.5                                                              | 9.0<br>9.0   | 2.5<br>3.5                                                              | 8.0<br>7.5  | ns    |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output Enable Time $\overline{OE}$ to $\overline{Z}$  | 2.5<br>2.5                                                        | 4.3<br>4.3 | 6.0<br>6.0  | 2.0<br>2.5                                                              | 7.0<br>7.5   | 2.5<br>2.5                                                              | 7.0<br>6.5  | ns    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Output Disable Time $\overline{OE}$ to $\overline{Z}$ | 2.5<br>1.5                                                        | 4.0<br>3.0 | 5.5<br>4.5  | 2.5<br>1.5                                                              | 6.0<br>5.0   | 2.5<br>1.5                                                              | 6.0<br>4.5  |       |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output Enable Time $\overline{OE}$ to Z               | 3.5<br>3.5                                                        | 5.0<br>5.5 | 7.0<br>7.5  | 3.0<br>3.5                                                              | 8.5<br>9.0   | 3.0<br>3.5                                                              | 7.5<br>8.0  |       |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Output Disable Time<br>OE to Z                        | 2.0<br>1.5                                                        | 3.8<br>3.0 | 5.5<br>4.5  | 2.0<br>1.5                                                              | 5.5<br>5.5   | 2.0<br>1.5                                                              | 5.5<br>4.5  | ns    |









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.