April 1999

National Semiconductor

54LVX3384 10-Bit Low Power Bus Switch

General Description

The 54LVX3384 provides 10 bits of high-speed CMOS TTL-compatible bus switches. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. The device is organized as two 5-bit switches with separate bus enable (\overline{OE}) signals. When \overline{OE} is low, the switch is on and port A is connected to port B. When \overline{OE} is high, the switch is open and a high-impedance state exists between the two ports.

Features

- 4Ω switch connection between two ports
- Minimal propagation delay through the switch
- Ultra low power with <0.1 µA typical I_{CC}
- Zero ground bounce in flow-through mode
- Control inputs compatible with TTL levels
- Available in CDIP and Cerpack Packaging

Connection Diagram

Standard Microcircuit Drawing (SMD) 5962-9950701

Ordering Code

Order Number	Package Number	Package Description
54LVX3384J-QML	J24F	24-Lead Ceramic Dual-in-line
54LVX3384W-QML	W24C	24-Lead Cerpack

Logic Diagram

Pin Descriptions

Pin Names	Description
OEA, OEB	Bus Switch Enable
A ₀ -A ₉	Bus A
B ₀ -B ₉	Bus B

Truth Table

OEA	OEB	$B_0 - B_4$	B ₅ –B ₉	Function
L	L	A ₀ -A ₄	A ₅ -A ₉	Connect
L	Н	A ₀ -A ₄	HIGH-Z State	Connect
н	L	HIGH-Z State	A ₅ -A ₉	Connect
Н	н	HIGH-Z State	HIGH-Z State	Disconnect

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	-0.5V to +7.0V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) V _{IN} <0V	–20 mA
DC Output (I _{OUT}) Sink Current	100 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Power Dissapation	500mW
Junction Temperature (T ₁)	175°C

DC Electrical Characteristics

Recommended Operating Conditions (Note 3)

vد
۶V
/V
C

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V _{cc} (V)	T _A = -55°C to +125°C		Units	Condition	
			Min	Max			
V _{IC}	Clamp Diode Voltage	4.5		-1.2	V	I _{IN} = – 18mA	
V _{IH}	High Level Input Voltage	4.5-5.5	2.0		V		
VIL	Low Level Input Voltage	4.5-5.5		0.8	V		
I,	Input Leakage Current	5.5		±1.0	μA	$0 \le V_{IN} \le 5.5V$	
l _{oz}	TRI-STATE Leakage Current	5.5		±10.0	μA	$0 \le A, B \le V_{CC}$	
R _{ON}	Switch On Resistance	4.5		10	Ω	V _{IN} = 0V, I _{IN} = 30mA	
	(Note 4)	4.5		20	Ω	V _{IN} = 0V, I _{IN} = 15mA	
I _{cc}	Quiescent Supply Current	5.5		10	μA	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$	
ΔI_{CC}	Increase in I _{cc} per Input	5.5		2.5	mA	One input at 3.4V	
						Other inputs at V _{CC} or GND	
I _{OFF}	Power Off Leakage Current	0.0		10	μA	V _{IN} = 5.5V or 0.0V	
I _{os}	Short Circuit Output Current (Note 5)	4.5	80		mA	V _{IN} = 4.5V, V _{OUT} = 0.0V	

Note 4: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 5: Not more than one output tested at a time.

AC Electrical Characteristics							
Symbol	Parameter	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $C_L = 50 \text{ pF},$ $RU=RD=500\Omega$		Units	Conditions	Figure No.	
		$V_{\rm CC} = 4.5 - 5.5V$					
		Min	Max				
t _{PHL} ,	Prop Delay Bus to Bus (Note 6)		0.25	ns	V _I = open	Figures 1, 2	
t _{PLH}							
t _{PZH} , t _{PZL}	Output Enable Time	1.0	6.0	ns	$V_{I} = 7V$ for t_{PZL}	Figures 1, 2	
	\overline{OE}_A , \overline{OE}_B to An, Bn				V_I = open for t_{PZH}		
t _{PHZ} ,	Output Disable Time	1.0	6.0	ns	I _I = 7V for t _{PLZ}	Figures 1, 2	
t _{PLZ}							
	\overline{OE}_A , \overline{OE}_B to An, Bn				V_{I} = open for t_{PHZ}		

Note 6: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitance (Note 7)

· ·

Symbol	Parameter	Max	Units	Conditions
CIN	Control Input Capacitance	10	pF	V _{CC} = Open
C _{I/O} (OFF)	Input/Output Capacitance	12	pF	$V_{CC}, \overline{OE} = 5.0V$

Note 7: Capacitance is characterized but not tested.

www.national.com

www.national.com

4

www.national.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Notes

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
•	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
www.	national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.