H-BRIDGE-

MOS

60V HBRIDGE-DRIVE-2NP-Channel Advanced Power

Summary

Device	V _{(BR)DSS}	QG	RDS(on)
NI OII	001/	0 0 0	25mΩ @ VGS= 10V
N-CH	60V	9.0nC	45mΩ @ VGS= 4.5V
D 011	1011 001/ 12.750	10.7.0	50mΩ @ VGS= -10V
P-CH	-60V	12.7nC	75mΩ @ VGS= -4.5V

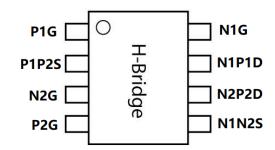
Description

This new generation complementary MOSFET H-Bridge

features low on-resistance achievable with low gate drive.

Features

- 2 x N + 2 x P channels in a SOIC package
- · Low voltage (VGS = 4.5 V) gate drive


Applications

- DC Motor control
- DC-AC Inverters

Ordering information

Device	Reel size (inches)	Tape width (mm)	Quantity per reel
5HB06N8	13	12	2,500

P1P2S 2Pin P1G 1Pin P1N1D 7Pin P2N2D 6Pin N1G 8Pin N1N2S 5Pin

Device marking

WFS 5HB06N8

H-BRIDGE-MOS

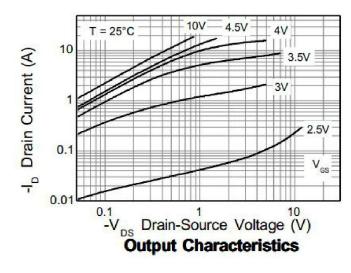
60V HBRIDGE-DRIVE-2NP-Channel Advanced Power MOSFET

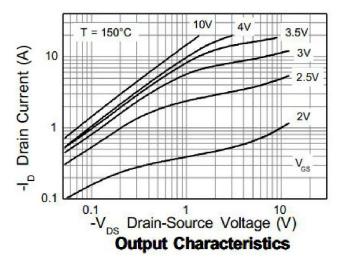
Absolute maximum ratings

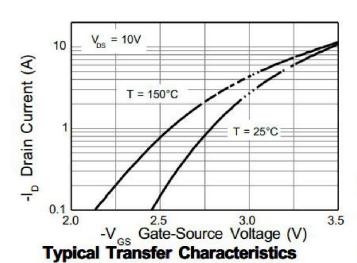
Parameter	Symbol	N-	P-	Unit
	V	channel	channel	
Drain-Source voltage	DSS	60	-60	V
Gate-Source voltage	V GS	±20	±20	V
Continuous Drain current @ VGS= 10V; TA=25°C (b)	I _D	4.98	-4.13	A
@ VGS= 10V; TA=70°C (b)		3.98	-3.31	
@ VGS= 10V; TA=25°C (a)		3.98	-3.36	
@ VGS= 10V; TL=25°C _(f)		4.17	-3.51	
Pulsed Drain current @ VGS= 10V; TA=25°C (C)	I DM	22.9	-19.6	A
Continuous Source current (Body diode) at TA =25°C (D)	IS	2.0	-2.0	A
Pulsed Source current (Body diode) at TA =25°C (c)	 SM	22.9	-19.6	A
Power dissipation at TA =25°C (a)	PD	0.87		W
Linear derating factor		6.94		mW/°C
Power dissipation at T _A =25°C (D)	PD	1.	35	W
Linear derating factor		10.9		mW/°C
Power dissipation at TL =25°C (T)	PD	0.95	0.98	W
Linear derating factor		7.63	7.81	mW/°C
Operating and storage temperature range	j, l	-55	to 150	°C

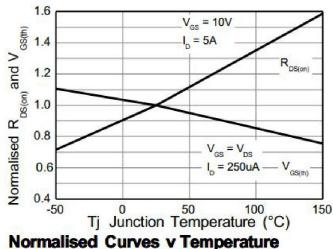
Thermal resistance

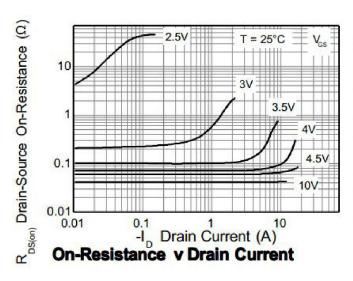
Parameter	Symbol	V	'alue	Unit
Junction to ambient (a)	$R_{_{\thetaJA}}$	1	44	°C/W
Junction to ambient (D)	$R_{_{\thetaJA}}$		92	°C/W
Junction to ambient (C)	$R_{_{\thetaJA}}$	106		°C/W
Junction to ambient (e)	$R_{_{\thetaJA}}$	254		°C/W
Junction to lead (T)	$R_{_{\theta JL}}$	131	128	°C/W

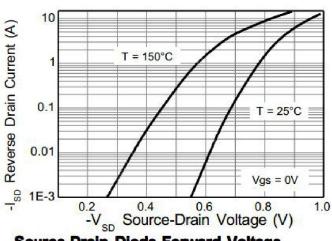

NOTES:

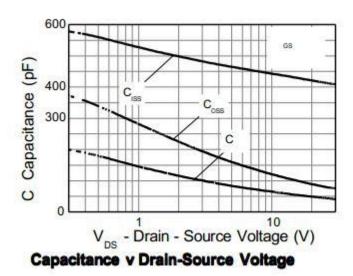

- (a) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions with the heat-sink split into two equal areas (one for each drain connection); the device is measured when operating in a steady-state condition with one active die.
- (b) Same as note (a), except the device is measured at $t \leq 10 \mbox{ sec.}$
- (c) Same as note (a), except the device is pulsed with D= 0.02 and pulse width 300 μs. The pulse current is limited by the maximum junction temperature.
- (d) For a device surface mounted on 50mm x 50mm x 1.6mm FR4 PCB with high coverage of single sided 2oz copper, in still air conditions with the heat-sink split into two equal areas (one for each drain connection); the device is measured when operating in a steady-state condition with one active die.
- (e) For a device surface mounted on minimum copper 1.6mm FR4 PCB, in still air conditions; the device is measured when operating in a steady-state condition with one active die.
- (f) Thermal resistance from junction to solder-point (at the end of the drain lead); the device is operating in a steady-state condition with one active die.

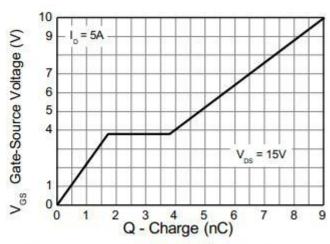


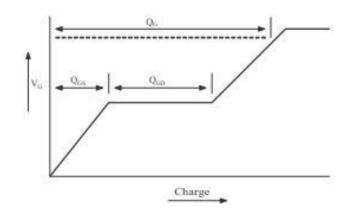


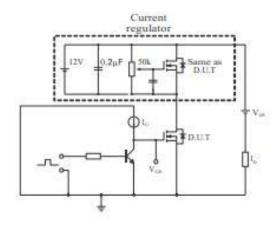

N-channel typical characteristics



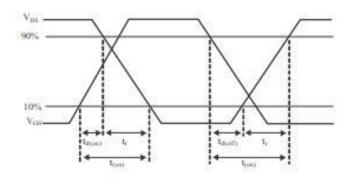


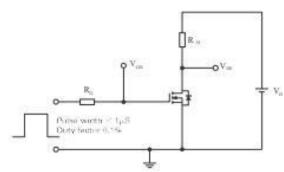



N-channel typical characteristics -continued



Gate-Source Voltage v Gate Charge


Test circuits


Basic gate charge waveform

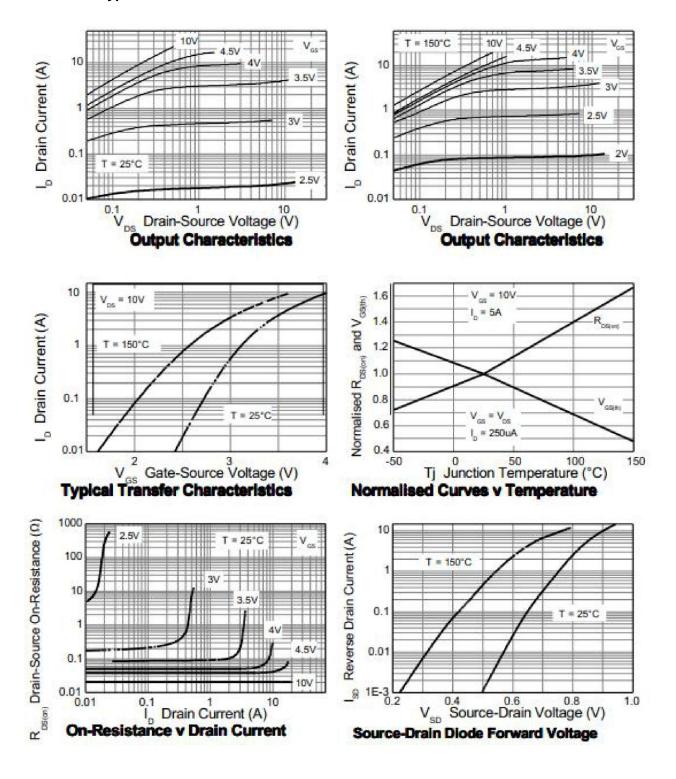
Gate charge test circuit

Switching time waveforms

Switching time test circuit

N-channel electrical characteristics (at Tamb = 25°C unless otherwise stated)

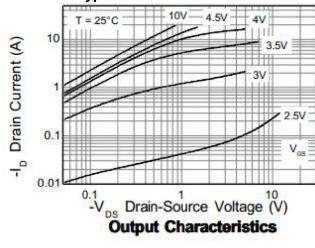
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Static						
Drain-Source breakdown voltage	V _{(BR)DSS}	60			V	ID = 250μA, VGS= 0V
Zero Gate voltage Drain current	DSS			0.5	μΑ	VDS= 30V, VGS= 0V
Gate-Body leakage	GSS			±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
Gate-Source threshold voltage	GS(th)	1.0		3.0	V	ID= 250μA, VDS= VGS
Static Drain-Source (a) on-state resistance	R _{DS(on)}			0.025 0.045	Ω	VGS= 10V, ID= 5A VGS= 4.5V, ID= 4A
Forward Transconductance (a) (c)	9 _{fs}		11.8		S	VDS= 15V, ID= 5A
Dynamic						
Capacitance (C)						
Input capacitance	iss		430		pF	
Output capacitance	oss		101		pF	VDS= 15V, VGS= 0V
Reverse transfer	C					f= 1MHz
capacitance (D) (C)	rss		56		pF	
Switching (D) (C)	.t			<u> </u>	1	
Turn-on-delay time	d(on)		2.5		ns	VDD= 15V, VGS= 10V
Rise time	tr		3.3		ns	ID= 1A
Turn-off delay time	d(off)		11.5		ns	$RG\cong 6\Omega,$
Fall time	tf		6.3		ns	,
Gate charge ^(C)						
Total Gate charge	Qg		9.0		nC	
Gate-Source charge	Q _{gs}		1.7		nC	VDS=15V, VGS= 10V
Gate-Drain charge	Q gd		2.0		nC	ID= 5A
Source-Drain diode						
Diode forward voltage (a)	V SD		0.82	1.2	V	IS= 1.7A, VGS= 0V
Reverse recovery time (C)	rr		12		ns	IS= 2.1A, di/dt= 100A/µs
Reverse recovery charge (C)	Q		4.9		nC	710- 2.1Λ, αι/αι= 100Λ/μS

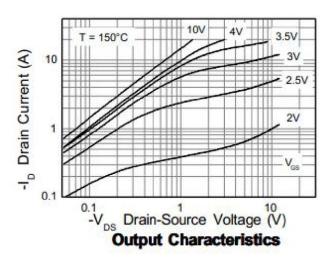

NOTES:

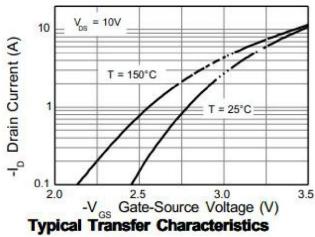
⁽a) Measured under pulsed conditions. Pulse width $\leq 300 \mu s;$ duty cycle $\leq 2\%.$

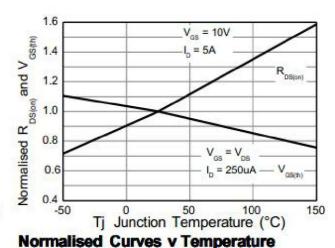
⁽b) Switching characteristics are independent of operating junction temperature. For design aid only, not subject to production testing

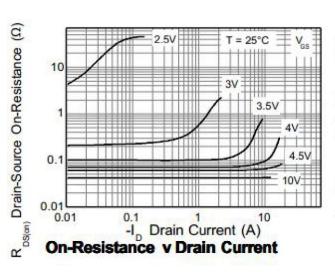
N-channel typical characteristics

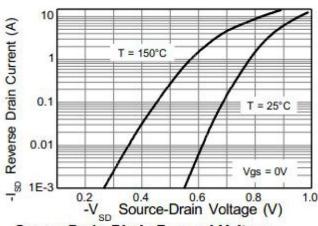


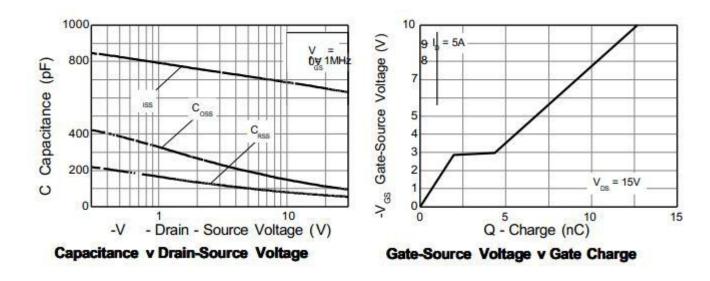

P-channel electrical characteristics (at Tamb = 25°C unless otherwise stated)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Static							
Drain-Source breakdown voltage	V (BR)DSS	-60			V	ID = 250μA, VGS= 0V	
Zero Gate voltage Drain current	DSS			0.5	μΑ	VDS= 30V, VGS= 0V	
Gate-Body leakage	GSS			±100	nA	$V_{gs} = \pm 20V, V_{Ds} = 0V$	
Gate-Source threshold voltage	V GS(th)	1.0		3.0	V	ID= 250μA, VDS= VGS	
Static Drain-Source on-state resistance (a)	R _{DS(on)}			0.050 0.075	Ω	VGS= -10V, ID= -5A VGS= -4.5V, ID= -4A	
Forward Transconductance (a) (c)	g _{fs}		14		S	VDS= -15V, ID= -5A	
Dynamic							
Capacitance (C)							
Input capacitance	iss		670		pF		
Output capacitance	oss		126		pF	VDS= -15V, VGS=0V	
Reverse transfer capacitance	C		70		pF	f= 1MHz	
Switching (D) (C)	t						
Turn-on-delay time	d(on)		1.9		ns		
Rise time	tr T		3.0		ns	VDD= -15V, VGS= -10V ID= -1A	
Turn-off delay time	d(off)		30		ns	$RG \cong 6\Omega$,	
Fall time	tf		21		ns	,	
Gate charge ^(C)	1 1			T	ī	T	
Total Gate charge	Qg		12.7		nC	_	
Gate-Source charge	Q _{gs}		2.0		nC	VDS=-15V, VGS= -10V	
Gate-Drain charge	gd		2.4		nC	ID= -5A	
Source-Drain diode					7		
Diode forward voltage (a)	V SD		-0.82	-1.2	V	IS= -1.7A, VGS= 0V	
Reverse recovery time (C)	rr		16.5		ns	-IS= -2.1A, di/dt= 100A/μs	
Reverse recovery charge (C)	Q		11.5		nC	713= -2.1A, αι/αι= 100A/μS	

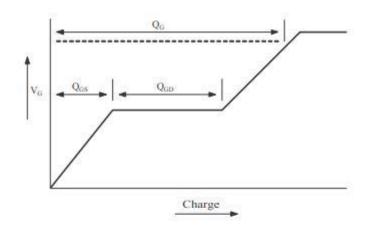


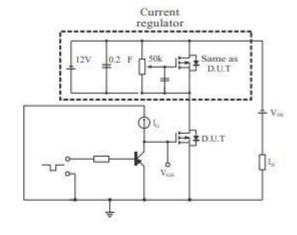

P-channel typical characteristics

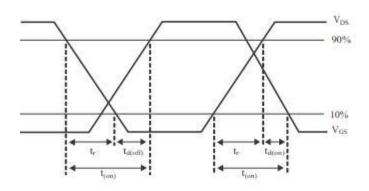


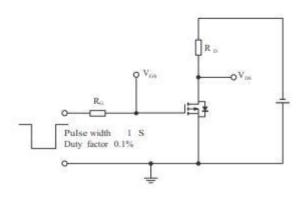


Source-Drain Diode Forward Voltage



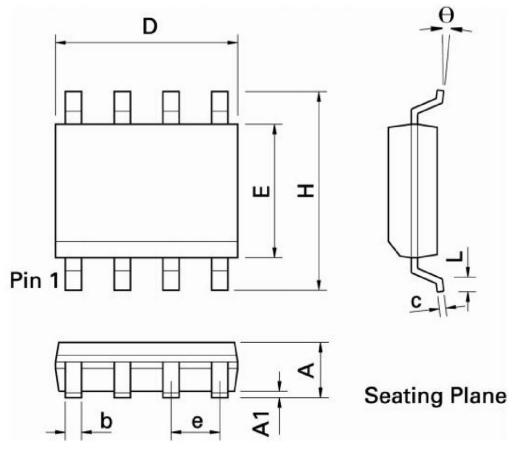

P-channel typical characteristics -continued


Test circuits


Basic gate charge waveform

Gate charge test circuit

Switching time waveforms


Switching time test circuit

H-BRIDGE-MOS

60V HBRIDGE-DRIVE-2NP-Channel Advanced Power MOSFET

Packaging details -SO8

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
Α	0.053	0.069	1.35	1.75	е	0.050 BSC		1.27 BSC	
A1	0.004	0.010	0.10	0.25	b	0.013	0.020	0.33	0.51
D	0.189	0.197	4.80	5.00	С	0.008	0.010	0.19	0.25
Н	0.228	0.244	5.80	6.20	θ	0°	8°	0°	8°
E	0.150	0.157	3.80	4.00	-	-	-	5.0	Ψ.
L	0.016	0.050	0.40	1.27		-	-	-	

Note: Controlling dimensions are in inches. Approximate dimensions are provided in millimeters