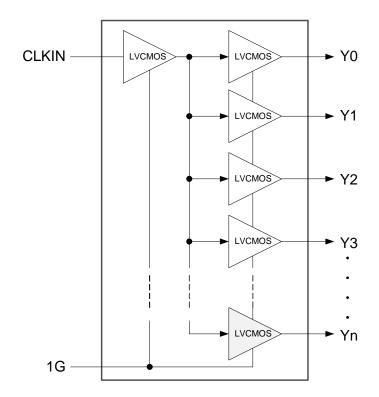
DATASHEET

Description

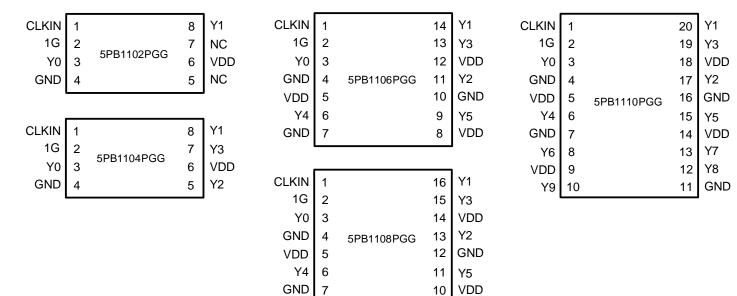
The 5PB11xx is a high-performance LVCMOS clock buffer family. It has best-in-class additive phase jitter of 50fsec RMS.


There are five different fan-out variations available: 1:2 to 1:10.

The 5PB11xx also supports a synchronous glitch-free output enable (OE) function to eliminate any potential intermediate incorrect output clock cycles when enabling or disabling outputs. It's available in various packages and can operate from a 1.8V to 3.3V supply.

Features

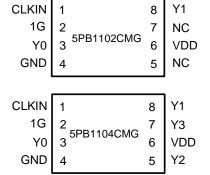
- High-performance 1:2, 1:4, 1:6, 1:8, 1:10 LVCMOS clock buffer
- Very low pin-to-pin skew < 50ps
- Very low additive jitter < 50fs
- Supply voltage: 1.8V to 3.3V
- 3.3V tolerant input clock
- fMAX = 200MHz
- Integrated serial termination for 50Ω channel
- Packaged in 8-, 14-, 16-, 20-pin TSSOP and as small as 2 x 2 mm DFN and QFN packages
- Industrial (-40°C to +85°C) and extended (-40°C to +105°C) temperature ranges

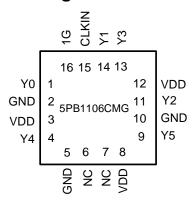

Block Diagram

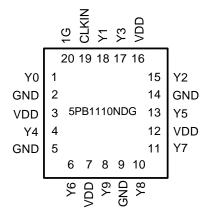
1

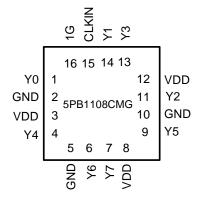
Pin Assignments for TSSOP Packages

Y6 8


Pin Descriptions for TSSOP Packages


Device Number	LVCMOS Clock Input		LVCMOS Clock Output	Supply Voltage	Ground
	CLKIN	1G	Y0, Y1, Y9	V DD	GND
5PB1102PGG	1	2	3, 8	6	4
5PB1104PGG	1	2	3, 8, 5, 7	6	4
5PB1106PGG	1	2	3, 14, 11, 13, 6, 9	5, 8, 12	4, 7, 10
5PB1108PGG	1	2	3, 16, 13, 15, 6, 11, 8, 9	5, 10, 14	4, 7, 12
5PB1110PGG	1	2	3, 20, 17, 19, 6, 15, 8, 13, 12, 10	5, 9, 14, 18	4, 7, 11, 16


9 Y7



Pin Assignments for DFN/QFN Packages

Pin Descriptions for DFN/QFN Packages

Device Number Clock Inp		Clock Output Enable	LVCMOS Clock Output	Supply Voltage	Ground
	CLKIN	1G	Y0, Y1, Y9	V DD	GND
5PB1102CMG	1	2	3, 8	6	4
5PB1104CMG	1	2	3, 5, 7, 8	6	4
5PB1106CMG	15	16	1, 4, 9, 11, 13, 14	3, 8, 12	2, 5, 10
5PB1108CMG	15	16	1, 4, 6, 7, 9, 11, 13, 14	3, 8, 12	2, 5, 10
5PB1110NDG	19	20	1, 4, 6, 8, 10, 11, 13, 15, 17, 18	3, 7, 12, 16	2, 5, 9, 14

Output Logic Table

Inp	Output	
CLKIN	1G	Yn
X	L	L
L	Н	L
Н	Н	Н

After at least three cycles of input clock toggling. Output Enable function is asynchronous to eliminate any intermediate incorrect output clock cycles during transition which may cause frequency peaking to the downstream device.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 5PB11xx. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, V _{DD}	3.8V
Output Enable and All Outputs	-0.4 V to V _{DD} + 0.5 V
CLKIN	-0.4 V to 3.465V
Ambient Operating Temperature (industrial)	-40 to +85°C
Ambient Operating Temperature (extended)	-40 to +105°C
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature (industrial)	-40		+85	°C
Ambient Operating Temperature (extended)	-40		+105	°C
Power Supply Voltage (measured in respect to GND)	+1.71		+3.465	V

DC Electrical Characteristics

 $(V_{DD} = 1.8V, 2.5V, 3.3V)$

 V_{DD} = 1.8V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	V_{DD}		1.71		1.89	V
Input High Voltage, CLKIN	V _{IH}	Note 1.	0.7 x V _{DD}		3.465	V
Input Low Voltage, CLKIN	V _{IL}	Note 1.			0.3 x V _{DD}	V
Input High Voltage, 1G	V _{IH}		1.6		V_{DD}	V
Input Low Voltage, 1G	V _{IL}				0.6	V
Output High Voltage	V _{OH}	I _{OH} = -5mA.	1.4			V
Output Low Voltage	V _{OL}	$I_{OL} = 5mA$.			0.4	V
Nominal Output Impedance	Z _O			50		Ω
Input Capacitance	C _{IN}	CLKIN, 1G pin.		5		pF
Operating Supply Current						
5PB1102		100MHz, no load, 25°C.		6	8	
5PB1104		100MHz, no load, 25°C.		12	13	
5PB1106	I _{DD}	100MHz, no load, 25°C.		15	18	mA
5PB1108		100MHz, no load, 25°C.		20	23	
5PB1110		100MHz, no load, 25°C.		23	27	

Notes: 1. Nominal switching threshold is $V_{DD}/2$.

 V_{DD} = 2.5V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	V_{DD}		2.375		2.625	V
Input High Voltage, CLKIN	V _{IH}	Note 1.	0.7 x V _{DD}		3.465	V
Input Low Voltage, CLKIN	V _{IL}	Note 1.			0.3 x V _{DD}	V
Input High Voltage, 1G	V _{IH}		1.8		V _{DD}	V
Input Low Voltage, 1G	V _{IL}				0.7	V
Output High Voltage	V _{OH}	I _{OH} = -8mA.	1.9			V
Output Low Voltage	V _{OL}	$I_{OL} = 8mA$.			0.5	V
Nominal Output Impedance	Z _O			50		Ω
Input Capacitance	C _{IN}	CLKIN, 1G pin.		5		pF
Operating Supply Current						
5PB1102		100MHz, no load, 25°C.		9	11	
5PB1104		100MHz, no load, 25°C.		15	18	
5PB1106	I _{DD}	100MHz, no load, 25°C.		21	24	mA
5PB1108		100MHz, no load, 25°C.		27	31	
5PB1110		100MHz, no load, 25°C.		32	37	

 V_{DD} = 3.3V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	V_{DD}		3.135		3.465	V
Input High Voltage, CLKIN	V _{IH}	Note 1.	0.7 x V _{DD}		3.465	V
Input Low Voltage, CLKIN	V _{IL}	Note 1.			0.3 x V _{DD}	V
Input High Voltage, 1G	V _{IH}		2		V_{DD}	V
Input Low Voltage, 1G	V _{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -12mA.	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 12mA.			0.7	V
Nominal Output Impedance	Z _O			50		Ω
Input Capacitance	C _{IN}	CLKIN, 1G pin.		5		pF
Operating Supply Current						
5PB1102		100MHz, no load, 25°C.		12	13	
5PB1104		100MHz, no load, 25°C.		20	22	
5PB1106	I _{DD}	100MHz, no load, 25°C.		25	30	mA
5PB1108		100MHz, no load, 25°C.		35	38	
5PB1110		100MHz, no load, 25°C.		40	45	

AC Electrical Characteristics $(V_{DD} = 1.8V, 2.5V, 3.3V)$

 V_{DD} = 1.8V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time (2pF load)	t _{OR}	0.36V to 1.44V, $C_L = 2pF$.		0.5	0.75	ns
Output Fall Time (2pF load)	t _{OF}	1.44V to 0.36V, C _L = 2pF.		0.5	0.75	ns
Output Rise Time (5pF load)	t _{OR}	0.36V to 1.44V, C _L = 5pF.		0.8	1.0	ns
Output Fall Time (5pF load)	t _{OF}	1.44V to 0.36V, C _L = 5pF.		0.8	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after V _{DD} ramp-up.			3	ms
Propagation Delay		Note 1.	1.5	1.9	2.5	ns
Buffer Additive Phase Jitter, RMS		156.25MHz, Integration Range: 12kHz-20MHz.			0.05	ps
Output to Output Skew (5PB1102/04)		Rising edges at V _{DD} /2, Note 2.		35	50	ps
Output to Output Skew (5PB1106)		Rising edges at V _{DD} /2, Note 2.		35	58	ps
Output to Output Skew (5PB1108/10)		Rising edges at V _{DD} /2, Note 2.		45	65	ps
Device to Device Skew		Rising edges at V _{DD} /2.			200	ps
Output Enable Time	t _{EN}	$C_L \le 5pF$.			3	cycles
Output Disable Time	t _{DIS}	$C_L \le 5pF$.			3	cycles
Duty Cycle	t _{DC}	See note 3.		50		%

V_{DD} = 2.5V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time (2pF load)	t _{OR}	$0.5V \text{ to } 2.0V, C_L = 2pF.$		0.4	0.7	ns
Output Fall Time (2pF load)	t _{OF}	2.0V to 0.5V, C _L = 2pF.		0.4	0.7	ns
Output Rise Time (5pF load)	t _{OR}	$0.5V \text{ to } 2.0V, C_L = 5pF.$		0.75	1.0	ns
Output Fall Time (5pF load)	t _{OF}	2.0V to 0.5V, C _L = 5pF.		0.75	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after V _{DD} ramp-up.			3	ms
Propagation Delay (5PB1102/04)			1.9	2.4	2.9	ns
Propagation Delay (5PB1106/08)		Note 1.	2.0	2.4	3.3	ns
Propagation Delay (5PB1110)			2.0	2.4	3.0	ns
Buffer Additive Phase Jitter, RMS		156.25MHz, Integration Range: 12kHz-20MHz.			0.05	ps
Output to Output Skew (5PB1102/04)		Rising edges at V _{DD} /2, Note 2.		35	50	ps
Output to Output Skew (5PB1106)		Rising edges at V _{DD} /2, Note 2.		35	58	ps
Output to Output Skew (5PB1108/10)		Rising edges at V _{DD} /2, Note 2.		45	65	ps
Device to Device Skew		Rising edges at V _{DD} /2.			200	ps
Output Enable Time	t _{EN}	C _L ≤ 5pF.			3	cycles
Output Disable Time	t _{DIS}	C _L ≤5pF.			3	cycles
Duty Cycle	t _{DC}	See note 3.		50		%

V_{DD} = 3.3V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise.

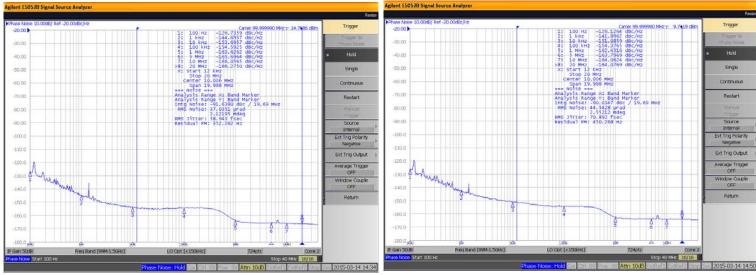
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time (2pF load)	t _{OR}	0.66V to 2.64V, C _L = 2pF.		0.45	0.6	ns
Output Fall Time (2pF load)	t _{OF}	2.64V to 0.66V, C _L = 2pF.		0.45	0.6	ns

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Rise Time (5pF load)	t _{OR}	$0.66V$ to $2.64V$, $C_L = 5pF$.		0.7	1.0	ns
Output Fall Time (5pF load)	t _{OF}	2.64V to 0.66V, C _L = 5pF.		0.7	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after V _{DD} ramp-up.			3	ms
Propagation Delay (5PB1102/04)			1.7	2	2.4	ns
Propagation Delay (5PB1106/08)		Note 1.	1.7	2	2.7	ns
Propagation Delay (5PB1110)			1.7	2	2.5	ns
Buffer Additive Phase Jitter, RMS		156.25MHz, Integration Range: 12kHz-20MHz.			0.05	ps
Output to Output Skew (5PB1102/04)		Rising edges at V _{DD} /2, Note 2.		35	50	ps
Output to Output Skew (5PB1106)		Rising edges at V _{DD} /2, Note 2.		35	58	ps
Output to Output Skew (5PB1108/10)		Rising edges at V _{DD} /2, Note 2.		45	65	ps
Device to Device Skew		Rising edges at V _{DD} /2.			200	ps
Output Enable Time	t _{EN}	C _L ≤ 5pF.			3	cycles
Output Disable Time	t _{DIS}	$C_L \le 5pF$.			3	cycles
Duty Cycle	t _{DC}	See note 3.		50		%

Notes:

- 1. With rail to rail input clock.
- 2. Between any 2 outputs with equal loading.
- 3. Duty cycle on outputs will match incoming clock duty cycle when VIH on CLKIN pin equals VDD power supply voltage. Consult IDT for tight duty cycle clock generators.

Phase Noise Plots



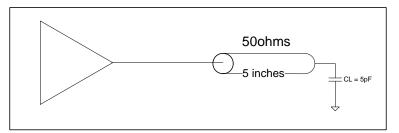
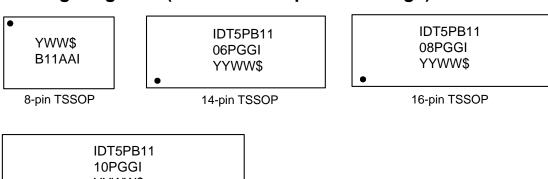
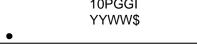
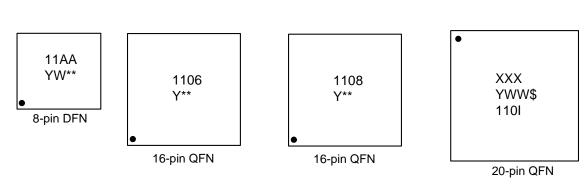

Figure 1. 5PB11xx Reference Phase Noise 58.9fs (12kHz to 20MHz)

Figure 2. 5PB11xx Output Phase Noise 70.9fs (12kHz to 20MHz)


The phase noise plots above show the low additive jitter of the 5PB11xx high-performance buffer. With an integration range of 12kHz to 20MHz, the reference input has about 58.9fs of RMS phase jitter while the output of 5PB11xx has about 70.9fs of RMS phase jitter. This results in a low additive phase jitter of only 39fs.



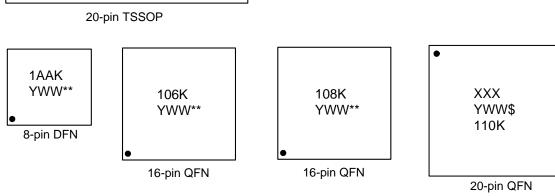
Test Load and Circuit



Marking Diagrams (industrial temperature range)

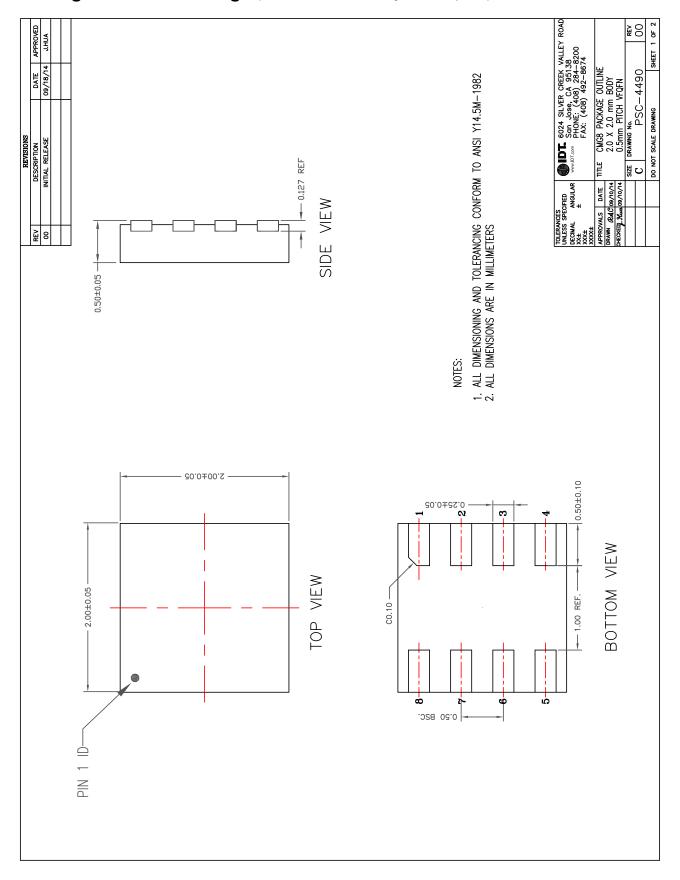
20-pin TSSOP

Notes:


- 1. "AA" denotes the last two digits of the part number for 8-TSSOP and DFN (e.g. 02, 04).
- 2. "**" is the lot sequence.
- 3. "XXX" denotes the last three characters of the Asm lot (20-QFN only).
- 4. "YYWW", "YWW", "YW", or "Y" is the last digit(s) of the year and week that the part was assembled.
- 5. "\$" denotes the mark code.
- 6. "G" after the two-letter package code denotes RoHS compliant package.
- 7. "I" denotes industrial temperature range device.
- 8. Bottom marking: LOT and COO (TSSOP only).

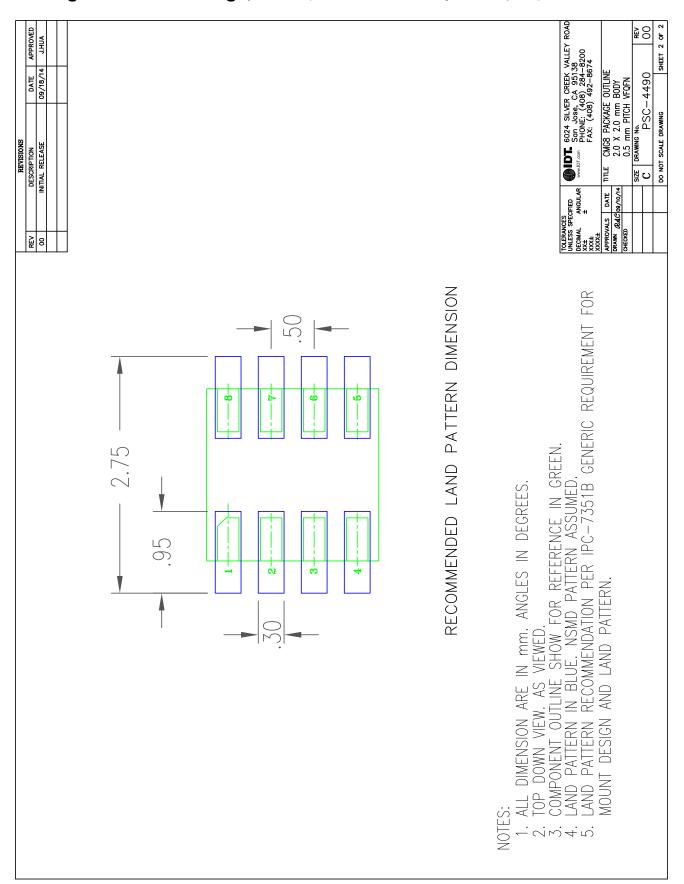
Marking Diagrams (extended temperature range)

Notes:

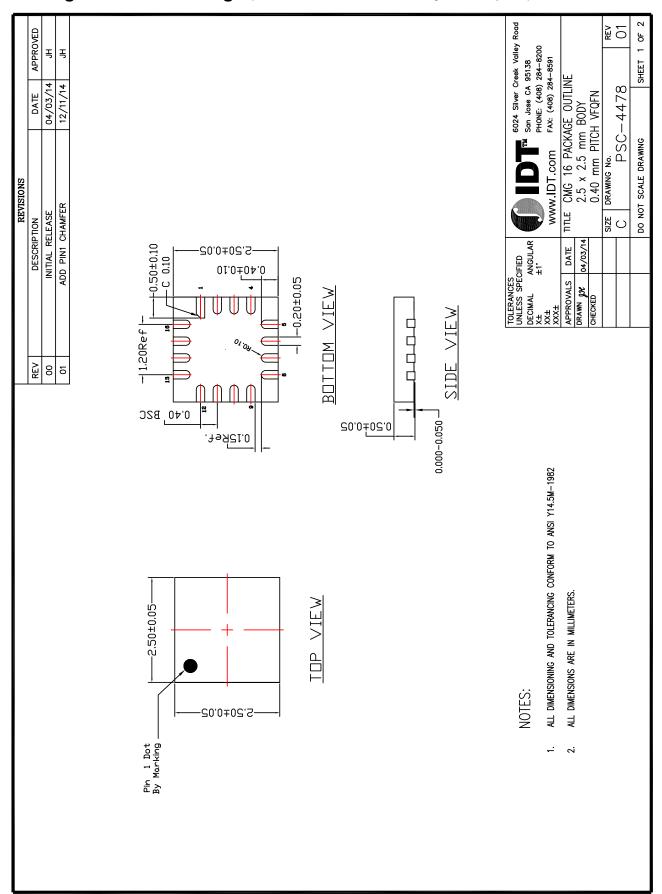

- 1. "AA" denotes the last two digits of the part number for 8-TSSOP and DFN (e.g. 02, 04).
- 2. "**" is the lot sequence.
- 3. "XXX" denotes the last three characters of the Asm lot (20-QFN only).
- 4. "YYWW", "YWW", "YW", or "Y" is the last digit(s) of the year and week that the part was assembled.
- 5. "\$" denotes the mark code.
- 6. "G" after the two-letter package code denotes RoHS compliant package.
- 7. "K" denotes extended temperature range device.
- 8. Bottom marking: LOT and COO (TSSOP only).

Thermal Characteristics

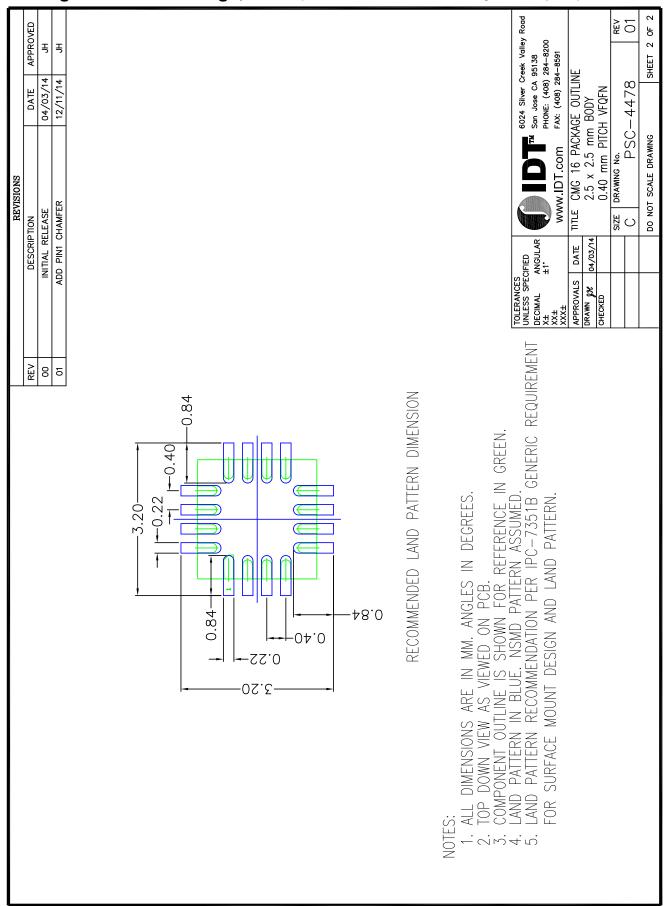
Package	Applies to	Θ_{JA}	Θ _{JC}	Θ_{JB}	Units
8-TSSOP	5PB1102, 5PB1104	122.0	58.2	139.3	°C/W; still air
14-TSSOP	5PB1106	84.5	44.2	64.5	°C/W; still air
16-TSSOP	5PB1108	80.9	43.3	60.1	°C/W; still air
20-TSSOP	5PB1110	72.5	37.9	49.8	°C/W; still air
8-DFN	5PB1102, 5PB1104	120.2	99.4	63.3	°C/W; still air
16-QFN	5PB1106, 5PB1108	115.6	83.1	61.8	°C/W; still air
20-QFN	5PB1110	49.6	94.7	5.1	°C/W; still air



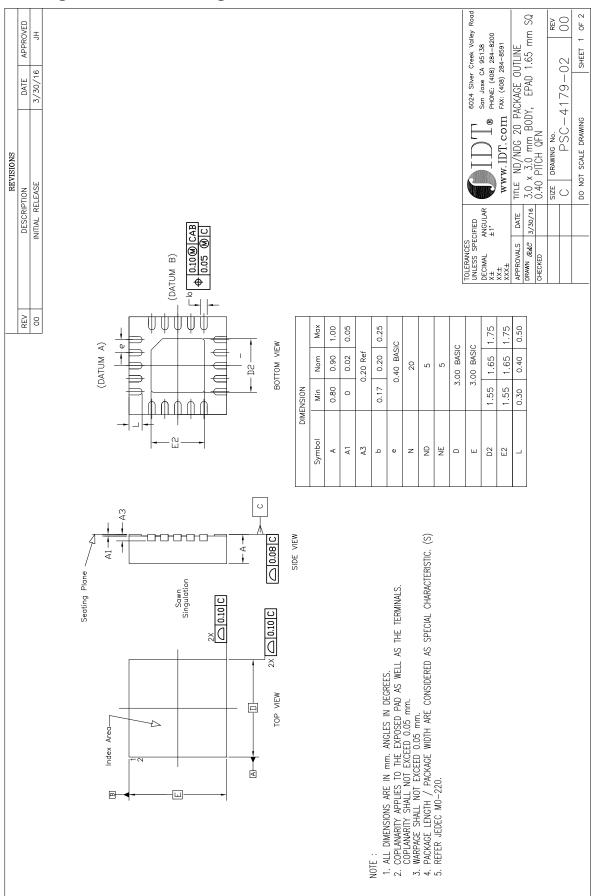
Package Outline Drawings (8-DFN, 2 x 2 mm Body, 0.5mm pitch)



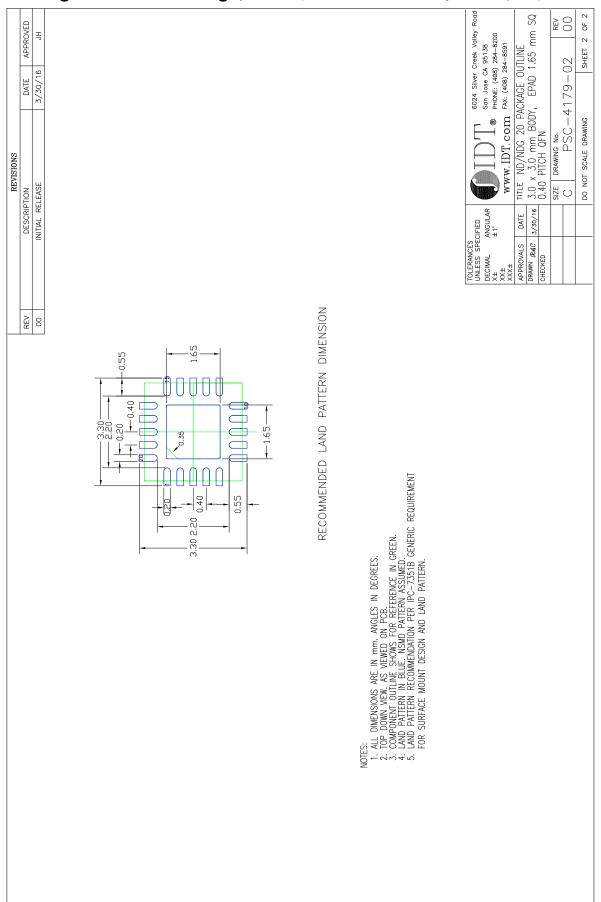
Package Outline Drawings, cont. (8-DFN, 2 x 2 mm Body, 0.5mm pitch)



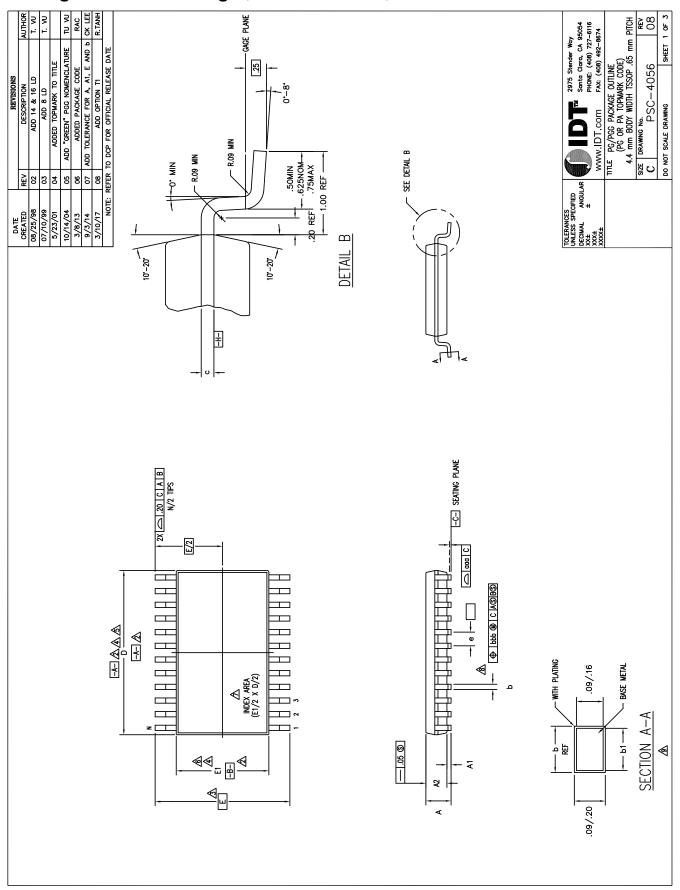
Package Outline Drawings (16-VFQFN, 2.5 x 2.5 mm Body, 0.4mm pitch)



Package Outline Drawings, cont. (16-VFQFN, 2.5 x 2.5 mm Body, 0.4mm pitch)



Package Outline Drawings (20-QFN, 3 x 3 mm Body, 0.4mm pitch)



Package Outline Drawings, cont. (20-QFN, 3 x 3 mm Body, 0.4mm pitch)

Package Outline Drawings (8-, 14-, 16-, 20-TSSOP)

16

Package Outline Drawings, cont. (8-, 14-, 16-, 20-TSSOP)

Package Out	lir	ne I	Dr	'a\	ΝİI	ng	s,	CC	n	t.	(8-	, 1	4-, 16	- ,	20)-T	SS	0	P)													
REVISIONS AUTHOR AUTHOR 98 02 ADD 14 & 16 LD T. VU 99 03 ADDED TOPMARK TO TITLE T. VU 01 04 ADDED TOPMARK TO TITLE T. VU 04 05 ADDED PACKAGE CODE RAC 4 07 ADD TOLERADE FOR A, 1, E AND B CK LES 17 08 ADD OPTION TI RAC 17 08 ADD OPTION TI RAC 17 08 ADD OPTION TI RACH 17 08 ADD OPTION TI TAND OPTION TI RACH 17 08 ADD OPTION TI TAND OPTION TI RACH 17 08 ADD OPTION TI TAND O	PG/PGG28	RIATION	MIN NOM MAX	1.10	01.	9.70	6.20 6.40 6.60 3 4.30 4.40 4.50 4.6	.65 BSC	.25	.19 .22 .25	100.	788											GFED GRED THE SORT Stender Woy ANGULAR Sort CAMP CAMP CAMP CAMP CAMP CAMP CAMP CAMP	TILE PG/PGC PACKAGE	E -	C PSC-4056 08 DO NOT SCALE DRAWING SHEET 2 OF 3						
DATE CREATED 08/25/98 07/10/99 5/23/01 10/14/04 3/8/13 9/3/14 3/10/17		ZC	энш			4,5	3						ĺ										Sign									
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	324	z	MAX	1.20	.15	7.90	6.60		.30	.25	e e	2											TOLE UNLE DECIP	XXXX								
	PG/PGG24	JEDEC VARIATION	9 S	+	e. §	+	6.40	۱.,	.25	.22	1 1	24		I	1	zo	-ш			4,5	9,4											
		JEDEC	Z Z		H	+	6.20	1		.19	1 1		_				MAX	1.20	15	5.10	+	.30	0.10									
		zc	_ <u>_</u>	z ~~		4,5	3 6	╄		1	+		OPTION 11	PCC14T1	1 20	VARIATION	\vdash	+	+	5.00	+	10 01	1 1 1 4									
	02		AC NOM MAX	1.20	51.	+	6.60	+	.30 05:	.25	e e	2		۵		JEDEC VARIATION	F		H	+			++									
	PG/PGG20	JEDEC VARIATION		+	\vdash	\dashv	6.40 6	١.,	Ш	.22	1 1						Z		\vdash	A2 .80 D 4.90	+		pop qq N									
				N S	\vdash			H	+	6.20 6	1	. 19	. 19	, ,					Λ≻Σ ί		V	 	¥ 0	• E	ا قا م							
		zc]≥ ⊔⊢⊔	<u> </u>	ابا	4,5	3 6 4.6 4	┿		-	+	<u> </u>]]																			
	9		MAX	1.20	5. 2	\pm	6.60	1	.30	25	e e	2								Ж												
	PG/PGG16	PG/PGG	20/PGG	20/PGG	ARIATION	ARIATION	AB	\vdash	\vdash	+-			6.40 6	٦.,	ш	\dashv	1 1									JRRS. PER SII	TERLEAD		3LE ON LOWER			3,
		JEDEC VARIATION	JEDEC V	JEDEC \	N A				H	+	6.20 6	1			1 1	1			1994	+	=		¥	GATE BU 15 mm	ONS. IN	MITHIN	allowae Dimensik N the I	IWEEN		M0-15		
]≥ □⊢⊔		9	4,5	3 6.	+	.19	.19	+	<u> </u>]]		Y14.5M-1994	M PLANF		_	PLANE [-H-	NS OR XCEED .	Rotrusi Side	CATED	WIDTH WIDTH SATED O	ead Be		TRATION						
	4		$\overline{}$	WAX	1.20	51.	+	6.60	+	30	.25	e e	2				_		식	DATUM	OTRUSIO . NOT E	H OR PI) HE IC	ROTF HE LEAD BE LOG	崖		5 REGIS					
	PG/PGG14	PG/PGG1	C/PGC1	ARIATION	AB-1	+	\vdash	\dashv	6.40 6	10	Ш	\dashv	1 1				ORM TO	MINED /		G PLAN	INED AT	ASH, PR S SHALI	ND FLAS D .25 r	UT MUS	DAMBA S OF TI CANNOT	CTION 0		ATION 9				
			JEDEC VARIATION	H		H	+		1		\vdash	1 1				G CONF	TO BE DETERMINED AT DATU		r Seatin	DETERM	IOLD FL/ E BURR	Interle F excee	IONAL B	INCLUDE V EXCES DAMBAR	FLAT SE	S	PUBLIC					
			35	86.	8.	4,5 4.90	3 6.20	╄	6.	.19	+	<u> </u>]]		ERANCIN		2	AINED A	TO BE	CLUDE N	ICLUDE ALL NO	IS OPT	S NOT	O THE	LIMETER	, AD &						
			MAX E		51.	+	6.60	1	.30	.25	e e	,			ND TOL	4		DETER	E1 ARE	NOT INC	NOT IN	ENTIFIER)	ON DOE N IS .08 AL CONI	APPLY T ROM THI	N N	ORMS TO AB, AC						
	PG/PGG8	EDEC VARIATION	EDEC VARIATION AA	JEDEC VARIATION	ARIATION	ARIATION	\vdash	+	H	+	+	4	.25 .3	\dashv	1 1				ONING A	<u> -</u>]	10 BE	D AND	DOES , PROTE	E1 DOES PROTRUS	IN 1 ID NDICATE	DIMENSI TRUSION MATERI THE FOC	VSIONS .	ons ari	E CONF(
					F		H	+	0 6.40	۱۳,		\dashv	+	1	NOTES:		ALL DIMENSIONING AND TOLERANCING CONFORM TO ASME	DATUMS [-A-] AND [-B-]		DIMENSION E TO BE DETERMINED AT SEATING PLANE [—C—]	DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM	DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR CATE BURRS SHALL NOT EXCEED .15 mm PER SIDE	DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .25 mm PER SIDE	DETAIL OF PIN 1 IDENTIFIER IS OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED	LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS. 08 mm IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT	THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .10 AND .25 mm FROM THE LEAD TIP	ALL DIMENSIONS ARE IN MILLIMETERS	THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO—153, VARIATION AA, AB—1, AB, AC, AD & AE				
		ω≻Σ	- M - M -	+	\vdash		E 6.20	┿	ш	b1 .19	- I - I		<u> </u>		ALL	DATI	5	DIME	DIME	DIME	DIME	呂王	LEAL DAM. AT N	Ĭ	ALL	THIS						
		<u> </u>		1		<u> </u>		ľ		<u> </u>	이스	, <u> </u>	J		-	≪	1 <	Q	\blacksquare	$ \lozenge $	@	\triangleleft	\triangleleft		10	=						

Package Outline Drawings, cont. (8-, 14-, 16-, 20-TSSOP)

DATE REV DESCRIPTION AUTHOR OB/25/98 02 ADD 14 & 16 LD T. VU O7/10/99 03 ADDED TOPMARK TO TITLE T. VU 5/23/01 04 ADDED TOPMARK TO TITLE 10/14/34 06 ADD "GREEN" POS NOMENCATURE TU VU 5/8/13 06 ADD TOLERANCE FOR A, 1, E AND B CK LEE 5/10/17 08 ADD OPTION TI R. TANH NOTE: REFER TO DOP FOR OFFICIAL RELEASE DATE	awings, cont. (6-, 14-, 16-, 26-1330F)	TOLERANCES TOLERANCES TOLERANCES TOLERANCES TOLERANCES TOLERANCE
LAND PATTERN DIMENSIONS	+ +	MIN MAX MIN MIN MAX MIN MAX

Ordering Information (industrial temperature range)

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5PB1102PGGI	see page 8	Tubes	8-TSSOP	-40 to +85°C
5PB1102PGGI8		Tape and Reel	8-TSSOP	-40 to +85°C
5PB1104PGGI		Tubes	8-TSSOP	-40 to +85°C
5PB1104PGGI8		Tape and Reel	8-TSSOP	-40 to +85°C
5PB1106PGGI		Tubes	14-TSSOP	-40 to +85°C
5PB1106PGGI8		Tape and Reel	14-TSSOP	-40 to +85°C
5PB1108PGGI		Tubes	16-TSSOP	-40 to +85°C
5PB1108PGGI8		Tape and Reel	16-TSSOP	-40 to +85°C
5PB1110PGGI		Tubes	20-TSSOP	-40 to +85°C
5PB1110PGGI8		Tape and Reel	20-TSSOP	-40 to +85°C
5PB1102CMGI		Cut Tape	8-DFN	-40 to +85°C
5PB1102CMGI8		Tape and Reel	8-DFN	-40 to +85°C
5PB1104CMGI		Cut Tape	8-DFN	-40 to +85°C
5PB1104CMGI8		Tape and Reel	8-DFN	-40 to +85°C
5PB1104CMGI/W*		Tape and Reel	8-DFN	-40 to +85°C
5PB1106CMGI		Cut Tape	16-QFN	-40 to +85°C
5PB1106CMGI8		Tape and Reel	16-QFN	-40 to +85°C
5PB1108CMGI		Cut Tape	16-QFN	-40 to +85°C
5PB1108CMGI8		Tape and Reel	16-QFN	-40 to +85°C
5PB1110NDGI		Tubes	20-QFN	-40 to +85°C
5PB1110NDGI8		Tape and Reel	20-QFN	-40 to +85°C

^{* &}quot;/W" stands for tape and reel with pin 1 orientation: EIA-481-D. All other tape and reels options come with EIA-481-C pin 1 orientation.

Ordering Information (extended temperature range)

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5PB1102PGGK	see page 9	Tubes	8-TSSOP	-40 to +105°C
5PB1102PGGK8		Tape and Reel	8-TSSOP	-40 to +105°C
5PB1104PGGK		Tubes	8-TSSOP	-40 to +105°C
5PB1104PGGK8		Tape and Reel	8-TSSOP	-40 to +105°C
5PB1106PGGK		Tubes	14-TSSOP	-40 to +105°C
5PB1106PGGK8		Tape and Reel	14-TSSOP	-40 to +105°C
5PB1108PGGK		Tubes	16-TSSOP	-40 to +105°C
5PB1108PGGK8		Tape and Reel	16-TSSOP	-40 to +105°C
5PB1110PGGK		Tubes	20-TSSOP	-40 to +105°C
5PB1110PGGK8		Tape and Reel	20-TSSOP	-40 to +105°C
5PB1102CMGK		Cut Tape	8-DFN	-40 to +105°C
5PB1102CMGK8		Tape and Reel	8-DFN	-40 to +105°C
5PB1104CMGK		Cut Tape	8-DFN	-40 to +105°C
5PB1104CMGK8		Tape and Reel	8-DFN	-40 to +105°C
5PB1106CMGK		Cut Tape	16-QFN	-40 to +105°C
5PB1106CMGK8		Tape and Reel	16-QFN	-40 to +105°C
5PB1108CMGK		Cut Tape	16-QFN	-40 to +105°C
5PB1108CMGK8		Tape and Reel	16-QFN	-40 to +105°C
5PB1110NDGK		Tubes	20-QFN	-40 to +105°C
5PB1110NDGK8		Tape and Reel	20-QFN	-40 to +105°C

[&]quot;G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Revision History

Date	Description of Change
March 20,2015	Initial release.
May 19, 2015	 Expanded Output Enable function text in General Description, and within the note under "Output Logic Table". Updated all "Buffer Additive Phase Jitter, RMS" conditions from 125MHz to 156.25MHz.
June 9, 2015	 Corrected typos in part numbers in DC Electrical Tables. Updated existing Output Rise/Fall Time specs for 5pF load. Added additional Output Rise/Fall specs for 2pF load.
June 15, 2015	Fixed typos in Output Rise/Fall Time 5pF specs for CL conditions; should be 5pF; not 2pF.
June 22, 2015	Changed 3.3V Operating Voltage spec from 3.15V min to 3.135V min; 3.45V max to 3.465V max.
August 24, 2015	 Added 5PB1104CMGIW orderable part. Updated Abs Max Ratings table for "Output Enable and All outputs" and "CLKIN"; changed -0.5 V to -0.4 and added -0.4 to respectively.
May 13, 2016	Replace NDG20 package outline drawing with latest version.
December 15, 2016	Updated marking diagrams for all TSSOP devices.
February 10, 2017	Change Propagation Delay maximum spec in 1.8V AC electrical characterization table from 2.2 to 2.5ns.
March 28, 2017	 Updated Propagation Delay specifications for 5PB1106/08/10; 2.5V and 3.3V. Updated output-output skew maximum specifications for 5PB1106; 1.8V, 2.5V, 3.3V. Updated legal disclaimer. Updated package outline drawings.
May 17, 2017	Added thermal theta JA, JB, JC values to all parts.
May 23, 2017	Updated 3.3V, 2.5V, and 1.8V IDD typical and maximum values. Updated ordering information.
September 19, 2017	Updated Input High Voltage, CLKIN (VIH) maximum values.
February 20, 2018	Updated absolute maximum supply voltage from 3.465V to 3.8V.

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.idt.com Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775

www.idt.com/go/sales

Tech Support

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.