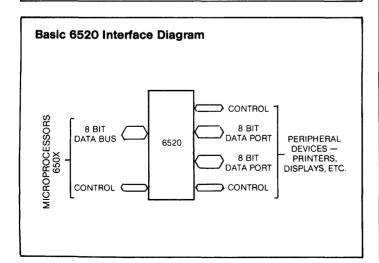
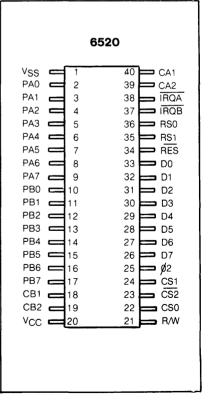


MPS
6520
PERIPHERAL
ADAPTER

6520 PERIPHERAL ADAPTER


DESCRIPTION


The 6520 Peripheral Adapter is designed to solve a broad range of peripheral control problems in the implementation of microcomputer systems. This device allows a very effective trade-off between software and hardware by providing significant capability and flexibility in a low cost chip. When coupled with the power and speed of the 6500 family of microprocessors, the 6520 allows implementation of very complex systems at a minimum overall cost.

Control of peripheral devices is handled primarily through two 8-bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. In addition, four peripheral control/interrupt input lines are provided. These lines can be used to interrupt the processor or for "hand-shaking" data between the processor and a peripheral device.

FEATURES

- High performance replacement for Motorola/AMI /MOSTEK/Hitachi peripheral adapter.
- N channel, depletion load technology, single +5V supply.
- Completely Static and TTL compatible.
- CMOS compatible peripheral control lines.
- Fully automatic "hand-shake" allows very positive control of data transfers between processor and peripheral devices.

SUMMARY OF 6520 OPERATION

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of 6520 operation.

CA1/CBI CONTROL

CRA (CRB)		(CRB)	Active Transition	IRQA (IRQB)					
	Bit 1	BitO	of Input Signal*	Interrupt Outputs					
	0	0	negative	Disable — remain high					
	0	1	negative	Enable — goes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)					
	1	0	positive	Disable — remain high					
	1	1	positive	Enable — as explained above					

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active transition of the CA1 (CB1) signal. This is independent of the state of Bit 0 in CRA (CRB).

CA2/CB2 INPUT MODES

CRA (CRB)				l,	
Bit 5 Bit 4 Bit 3				Active Transition of Input Signal*	IRQA (IRQB) Interrupt Output
	0	0	0	negative	Disable — remains high
	0	0	1	negative	Enable — goes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
	0	1	0	positive	Disable — remains high
	0	1	1	positive	Enable — as explained above

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2) signal. This is independent of the state of Bit 3 in CRA (CRB).

CA2 OUTPUT MODES

CRA		1					
	Bit 5	Bit 4	Bit 3	Mode	Description		
	1	0	0	"Handshake" on Read	CA2 is set high on an active transition of the CA1 interrupt input signal and set low by a microprocessor "Read A Data" operation. This allows positive control of data transfers from the peripheral device to the microprocessor.		
	1	0	1	Pulse Output	CA2 goes low for one cycle after a "Read A Data" operation. This pulse can be used to signal the peripheral device that data was taken.		
	1	1	0	Manual Output	CA2 set low		
	1	l 1	1	Manual Output	CA2 set high		

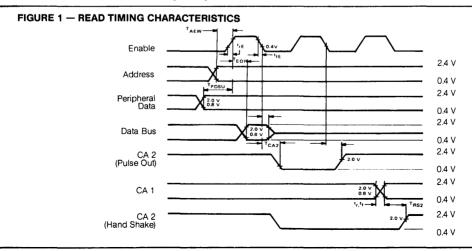
CB2 OUTPUT MODES

	Bit 5	CRB Bit 4	Bit 3	Mode	Description
-	1	0	0	"Handshake" on Write	CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
	1	0	1	Pulse Output	CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
	1	1	0	Manual Output	CB2 set low
	1	1	1	Manual Output	CB2 set high

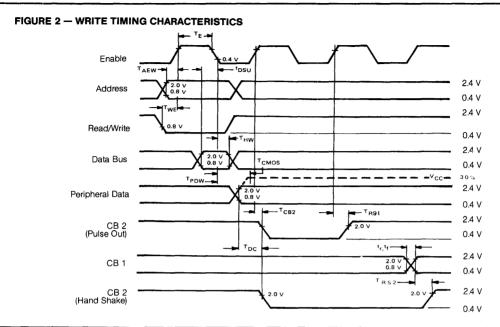
MAXIMUM RATINGS

Supply Voltage, V_{CC} -0.3 to +7.0V Input Voltage, V_{IN} -0.3 to +7.0V Operating Temperature Range, T_A 0 to +70°C Storage Temperature Range, T_{STG} -55 to +150°C

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.


COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.


STATIC D.C. CHARACTERISTICS (V_{CC} = 5.0 V \pm 5%, V_{SS} = 0, T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Input High Voltage (Normal Operating Levels)	VIH	+2.0	_	VCC	Vdc
Input Low Voltage (Normal Operating Levels)	VIL	-0.3	name.	+.8	Vdc
Input Threshold Voltage	VIT	0.8		2.0	Vdc
Input Leakage Current	IN			uAdc	μAdc
$V_{in} = 0 \text{ to } 5.0 \text{ Vdc}$			±1.0	±2.5	
"R/W, Reset, RS0,RS1,CS0,CS1,CS2,CA1,CB1,Ø2					
Three-State (Off State Input Current)	ITSI		±2.0	±10	,uAdc
(Vin = 0.4 to 2.4 Vdc, V _{CC} = max) D0-D7,PB0-PB7,CB2 Input High Current	UH	_	12.0	110	μλασ
$(V_{IH} = 2.4 \text{ Vdc}) \text{ PAO-PA7,CA2}$	I 'IH	-100	-250		μAdc
Input Low Current	l IIL	100			μασ
$(V_{11} = 0.4 \text{ Vdc}) \text{ PA0-PA7,CA2}$,,,,		-1.0	-1.6	mAdc
Output High Voltage	VOH				
$(V_{CC} = min, 1_{Load} = -100 \text{ uAdc})$	011	2.4	_	-	Vdc
Output Low Voltage	VOL				
$(V_{CC} = min, 1_{Load} = 1.6 \text{ mAdc})$		_	_	+0.4	Vdc
Output High Current (Sourcing)	ЧОН				A -1 -
$(V_{OH} = 2.4 \text{ Vdc})$		-100	-1000	_	µAdc
$^{(VO)}$ = 1.5 Vdc, the current for driving other than		-1.0	-2.5		mAdc
TTL, e.g., Darlington Base) PB0-PB7,CB2	1		i		
Output Low Current (Sinking)	l lor				
(VOL = 0.4 Vdc)		1.6 -		_	mAdc
Output Leakage Current (Off State) IRQA, IRQB	off	_	1.0	10	μAdc
Power Dissipation	PD	_	200	500	mW
Input Capacitance	Cin				pF
(V _{in} - 0, T _A = 25°C, f = 1.0 MHz) D0-D7.PA0-PA7.PB0-PB7.CA2.CB2	1	i		10	1
R/W,Reset,RS0,RS1,CS0,CS1,CS2,				7.0	
CA1,CB1,Ø2			_	20	
Output Capacitance	Cout		[===	
$(V_{in} - 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$	- 501	_	_	10	рF

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.

A.C. CHARACTERISTICS

Figure 1 — Read Timing Characteristics (Loading 130 pF and one TTL load)

Characteristics	Symbol	Min	Тур	Max	Unit
Delay Time, Address valid to Enable positive transition	TAEW	180	_	_	ns
Delay Time, Enable positive transition to Data valid on bus	TEDR	l –	_	395	ns
Peripheral Data Setup Time	TPDSU	300		_	ns
Data Bus Hold Time	THR	10		_	ns
Delay Time, Enable negative transition to CA2 negative transition	TCA2	l —	_	1.0	μs
Delay Time, Enable negative transition to CA2 positive transition	TRS1	. –		1.0	us
Rise and Fall Time for CA1 and CA2 input signals	tritf	l –	_	1.0	μs
Delay Time from CA1 active transition to CA2 positive transition	TRS2	-	_	2.0	μs
Rise and Fall Time for Enable input	trE,tfE			25	ņs

Figure 2 — Write Timing Characteristics

Characteristics	Symbol	Min	Тур	Max	Unit
Enable Pulse Width	TF	0.470		25	μs
Delay Time, Address valid to Enable positive transition	TAEW	180	_	_	ns l
Delay Time, Data valid to Enable negative transition	TDSU	300	_	_	l ns l
Delay Time, Read/Write negative transition to Enable positive transition	TWE	130	_	_	ns
Data Bus Hold Time	THW	10	_	_	l ns l
Delay Time, Enable negative transition to Peripheral Data valid	TPDW	-	_	1.0	l us
Delay Time, Enable negative transition to Peripheral Data valid, CMOS (VCC - 30%) PA0-PA7, CA2	TCMOS	-		2.0	jus
Delay Time, Enable positive transition to CB2 negative transition	T _{CB2}	-	_	1.0	l us l
Delay Time, Peripheral Data valid to CB2 negative transition	TDC	0	_	1.5	us l
Delay Time, Enable positive transition to CB2 positive transition	TRS1	_	-	1.0	μs
Rise and Fall Time for CB1 and CB2 input signals	tr. tr	-	_	1.0	us l
Delay Time, CB1 active transition to CB2 positive transition	TRS2			2.0	μs

COMMODQRE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability, function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.