March 1994 Revised May 2005 74ABT16374 16-Bit D-Type Flip-Flop with 3-STATE Outputs

74ABT16374 16-Bit D-Type Flip-Flop with 3-STATE Outputs

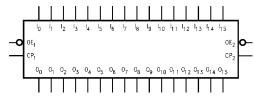
General Description

FAIRCHILD

SEMICONDUCTOR

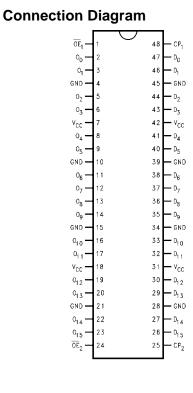
The ABT16374 contains sixteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (\overline{OE}) are common to each byte and can be shorted together for full 16-bit operation.

Features


- Separate control logic for each byte
- 16-bit version of the ABT374
- Edge-triggered D-type inputs
- Buffered Positive edge-triggered clock
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Guaranteed latch-up protection

Ordering Code:

Order Number	Package Number	Package Description				
74ABT16374CSSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide				
74ABT16374CMTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code						


Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Logic Symbol

Pin Descriptions

Pin Name	Description				
OE n	3-STATE Output Enable Input (Active LOW)				
CPn	Clock Pulse Input (Active Rising Edge)				
D ₀ -D ₁₅	Data Inputs				
O ₀ -O ₁₅	3-STATE Outputs				

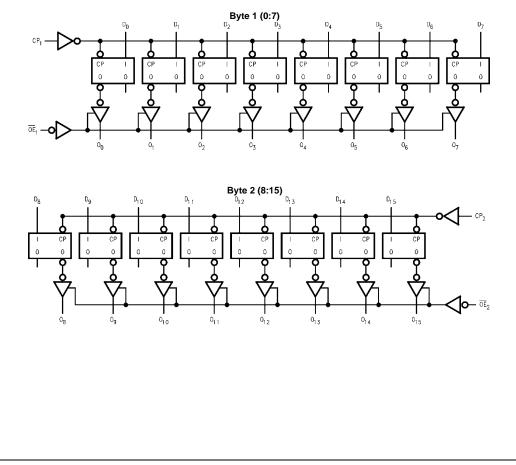
© 2005 Fairchild Semiconductor Corporation DS011668

www.fairchildsemi.com

Functional Description

The ABT16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the OE_n input does not affect the state of the flip-flops.

Truth Tables


	Inputs		Outputs
CP1	OE ₁	D ₀ –D ₇	0 ₀ –0 ₇
\	L	Н	н
~	L	L	L
L	L	Х	(Previous)
х	Н	Х	Z
	Inputs		Outputs
CP ₂	Inputs \overline{OE}_2	D ₈ –D ₁₅	Outputs O ₈ –O ₁₅
CP2	-	D₈–D₁₅ Н	-
СР ₂	-		0 ₈ –0 ₁₅
CP2 L	-		0 ₈ –0 ₁₅
 بر	OE ₂ L L	H	0 ₈ -0 ₁₅ H L

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Z = High Impedance

E ingit impodatioo

Logic Diagrams

Absolute Maximum Ratings(Note 1)

gs(Note 1) -65°C to +150°C Recommended Operating Conditions

74ABT16374

		Conditions	
Storage Temperature	-65°C to +150°C	Conditions	
Ambient Temperature under Bias	-55°C to +125°C	Free Air Ambient Temperature	-40°C to +85°C
Junction Temperature under Bias	-55°C to +150°C	Supply Voltage	+4.5V to +5.5V
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V	Minimum Input Edge Rate (ΔV/Δt)	
Input Voltage (Note 2)	-0.5V to +7.0V	Data Input	50 mV/ns
Input Current (Note 2)	-30 mA to +5.0 mA	Enable Input	20 mV/ns
Voltage Applied to Any Output		Clock Input	100mV/ns
in the Disabled or			
Power-Off State	-0.5V to 5.5V		
in the HIGH State	-0.5V to V _{CC}		
Current Applied to Output			
in LOW State (Max)	twice the rated I_{OL} (mA)		
DC Latchup Source Current:			
OE Pin	–350 mA		
(Across Comm Operating Range)		Note 1: Absolute maximum ratings are value	
Other Pins	–500 mA	may be damaged or have its useful life imp under these conditions is not implied.	aired. Functional operation
Over Voltage Latchup (I/O)	10V	Note 2: Either voltage limit or current limit is su	fficient to protect inputs.

DC Electrical Characteristics

Symbol	Param	leter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current				1	μA	Max	V _{IN} = 2.7V (Note 3)
					1	μΛ	IVIAA	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current B	reakdown Test			7	μA	Max	V _{IN} = 7.0V
IIL	Input LOW Current				-1	μA	Max	V _{IN} = 0.5V (Note 3)
					-1	μΛ	IVICA	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	ent			10	μΑ	0-5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$
I _{OZL}	Output Leakage Curre	ent			-10	μΑ	0-5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$
l _{os}	Output Short-Circuit (Current	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output HIGH Leakage	e Current			50	μA	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μA	0.0	$V_{OUT} = 5.5V$; All Others V_{CC} or GND
I _{CCH}	Power Supply Curren	t			2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Curren	t			62	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Curren	t			2.0	mA	Max	$\overline{OE} = V_{CC}$; All Others at V_{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V _{CC} or GND
ICCD	Dynamic I _{CC}	No Load				mA/	May	Outputs Open
	(Note 3)				0.30	MHz	Max	OE = GND, (Note 4)
								One Bit Toggling, 50% Duty Cycle

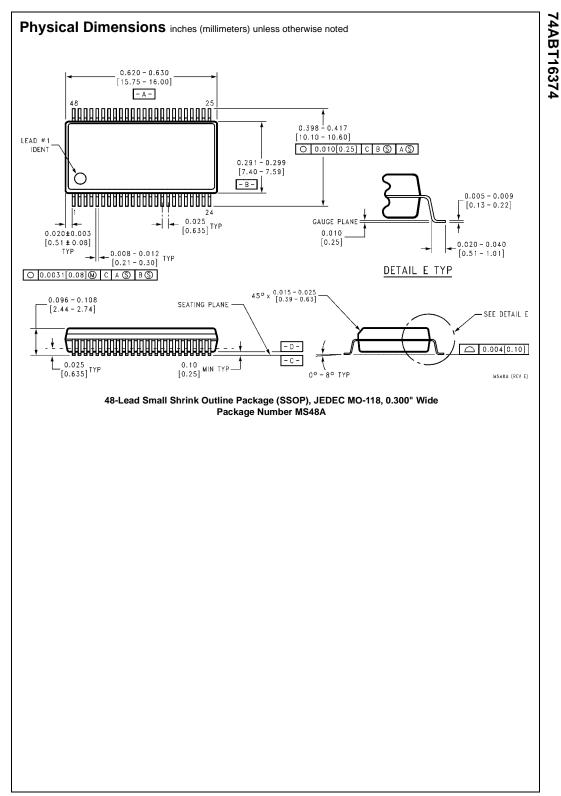
Note 3: Guaranteed, but not tested.

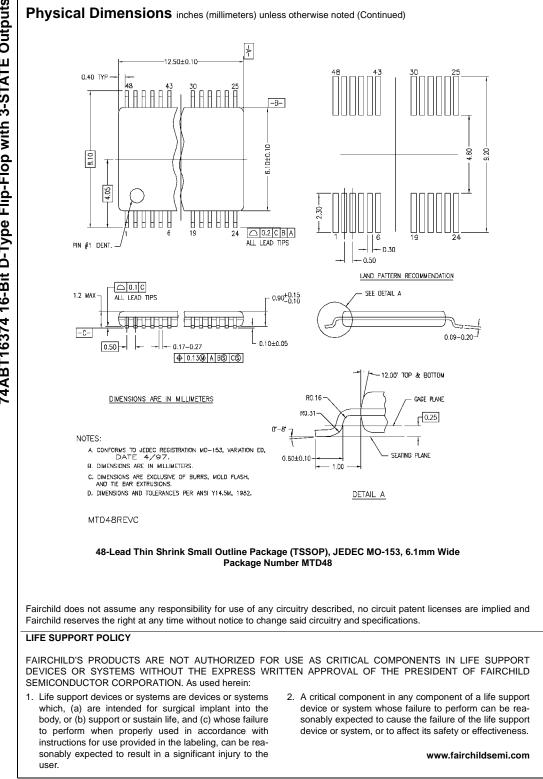
Note 4: For 8-bit toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

74ABT16374

AC Electrical Characteristics

Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$	
		Min	Тур	Мах	Min	Max	
f _{MAX}	Maximum Clock Frequency	150			150		MHz
t _{PLH}	Propagation Delay	1.8		6.2	1.8	6.2	ns
t _{PHL}	CP to On	1.8		5.9	1.8	5.9	115
t _{PZH}	Output Enable Time	1.2		5.6	1.2	5.6	
t _{PZL}		1.6		5.3	1.6	5.3	ns
t _{PHZ}	Output Disable Time	2.2		7.1	2.2	7.1	
t _{PLZ}		2.2		6.6	2.2	6.6	ns


AC Operating Requirements


Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = -40^{\circ}$ C to +85°C $V_{CC} = 4.5$ V to 5.5V $C_L = 50 \text{ pF}$		Units
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH	1.1		1.1		20
t _S (L)	or LOW D _n to CP	1.1		1.1		ns
t _H (H)	Hold Time, HIGH	1.3		1.3		20
t _H (L)	or LOW D _n to CP	1.3		1.3		ns
t _W (H)	Pulse Width, CP	3.0		3.0		20
t _W (L)	HIGH or LOW	3.0		3.0		ns

Capacitance

Symbol	Parameter	Тур	Units	Conditions (T _A = 25°C)
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	11.0	pF	$V_{CC} = 5.0V$

Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

www.fairchildsemi.com

6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC