SCAS105A – FEBRUARY 1990 – REVISED APRIL 1993

•	Single Down/Up Count Control Line	DW OR N PACKAGE (TOP VIEW)	
•	Look-Ahead Circuitry Enhances Speed of Cascaded Counters		
•	Fully Synchronous in Count Modes	Q _A [] 2 19 [] CLK Q _B [] 3 18 [] A	
•	Asynchronously Presettable with Load Control	GND [] 4 17]] B GND [] 5 16]] V _{CC}	
•	Flow-Through Architecture to Optimize PCB Layout	GND [] 6 15]] V _{CC} GND [] 7 14]] C Q _C [] 8 13]] D	
•	Center-Pin V _{CC} and GND Configurations to Minimize High-Speed Switching Noise	Q _D [9 12] <u>CTEN</u> MAX/MIN [10 11] LOAD	
•	EDIO M (Entreneral Derfermennen bruhenter)		

- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

description

The 74AC11191 is a synchronous, 4-bit binary reversible up/down counter. Synchronous counting operation is provided by clocking all flip-flops simultaneously so that the outputs change coincident with each other when instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

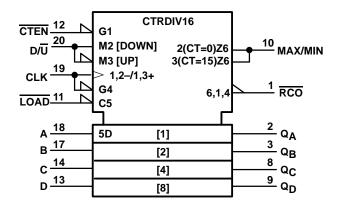
The outputs of the four flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input $\overline{(CTEN)}$ is low. A high at \overline{CTEN} inhibits counting. The direction of the count is determined by the level of the down/up (D/\overline{U}) input. When D/\overline{U} is low, the counter counts up and when D/\overline{U} is high, it counts down.

These counters feature a fully independent clock circuit. Changes at the control inputs (\overline{CTEN} and D/\overline{U}) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter will be dictated solely by the condition meeting the stable setup and hold times.

These counters are fully programmable; that is, the outputs may be preset to any number between 0 and 15 by placing a low on the load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independently of the level of the clock input. This feature allows the counter to be used as a modulo-N divider by simply modifying the count length with the preset inputs.

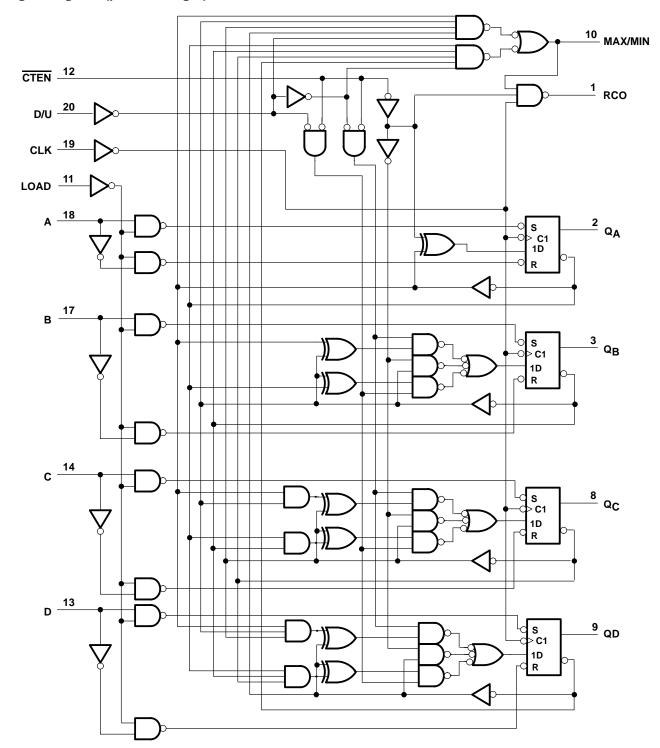
Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is zero (all outputs low) counting down or maximum (15) counting up. The ripple-clock output (\overline{RCO}) produces a low-level output pulse under those same conditions but only while the clock input is low. The counter can easily be cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

The 74AC11191 is characterized for operation from -40° C to 85° C.


EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

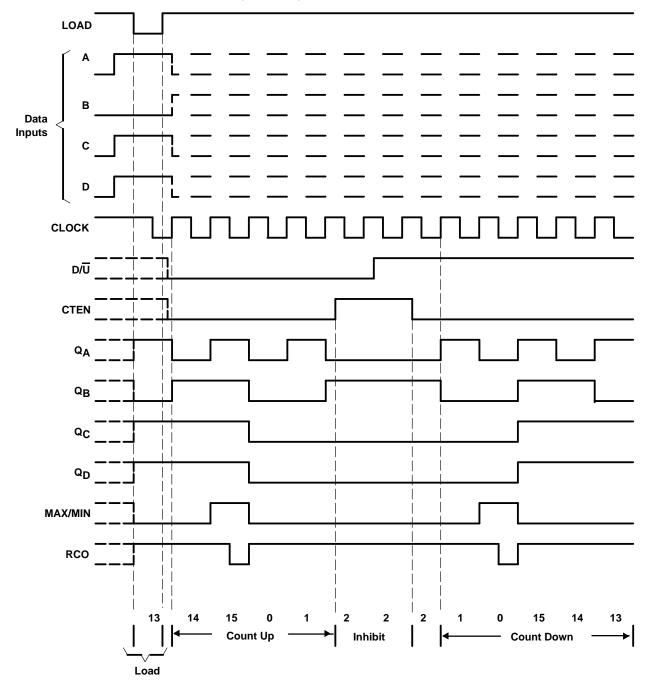
SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

logic diagram (positive logic)



SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, VI (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	$\dots \dots \pm 20 \text{ mA}$
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	
Continuous current through V _{CC} or GND pins	± 150 mA
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
VIH VIL <u>VI</u> VO IOH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		V _{CC} = 5.5 V	3.85	5 5.5 0.9 1.35 1.65 V _{CC} V _{CC} -4 -24 -24 12 24 24 10		
		V _{CC} = 3 V			0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5$ V	'		1.35	V
		V _{CC} = 5.5V			1.65	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		V _{CC} = 3 V			-4	
ЮН	High-level output current	$V_{CC} = 4.5$ V	'		-24	mA
		V _{CC} = 5.5 V	'		5.5 0.9 1.35 1.65 V _{CC} V _{CC} -4 -24 -24 12 24 24	
		V _{CC} = 3 V			12	
IOL	Low-level output current	V _{CC} = 4.5 V	,		24	mA
		V _{CC} = 5.5 V	'		24	
$\Delta t/\Delta v$	Input transition rise or fall rate	-	0		10	ns/V
TA	Operating free-air temperature		- 40		85	°C

recommended operating conditions

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vee	Т	₄ = 25°C	;	MIN	мах	UNIT
FARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX		INIAA	UNIT
			2.9			2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
Vон	$I_{OH} = -4 \text{ mA}$	3 V	2.58			$\begin{array}{c} 2.9 \\ 4.4 \\ 5.4 \\ 2.48 \\ 3.8 \\ 4.8 \\ 3.85 \\ \hline \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline \\ 0.1 \\ 0.1 \\ 0.44 \\ 0.44 \\ \hline \\ 0.44 \\ \hline \\ 0.44 \\ \hline \\ 1.65 \\ \hline \\ \pm 1 \\ \mu \\ 80 \\ \mu \end{array}$	V	
	I _{OH} = - 24 mA	4.5 V	3.94			3.8		
		5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
	l _{OL} = 50 μA	3 V			0.1		0.1	
		4.5 V			0.1		0.1	
		5.5 V			0.1		2.9 4.4 5.4 2.48 3.8 4.8 3.85 0.1 0.1 0.1 0.1 0.1 0.1 0.44 0.44 1.65 ± 1 μ 80 μ	
Vol	I _{OL} = 12 mA	3 V			0.36			V
		4.5 V			0.36		0.44	
	IOL = 24 mA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	1
lj	V _I = V _{CC} or GND	5.5 V			± 0.1		± 1	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			8		80	μA
Ci	V _I = V _{CC} or GND	5 V		4				pF

[†]Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

				T _A =	T _A = 25°C		МАХ	UNIT
				MIN	MAX	MIN	INIAA	UNIT
fclock	Clock frequency			0	50	0	50	MHz
	Pulse duration		LOAD low	4.8		4.8		
tw		CLK high or low	10		10		ns	
	Setup time		Data before LOAD↑	4		4		
		CTEN before CLK↑	12.5		12.5		ns	
t _{su}		D/U before CLK↑	13.5		13.5			
		LOAD inactive before CLK [↑]	2.5		2.5			
	Hold time	Data after LOAD↑	1		1			
^t h		CTEN after CLK [↑]	0		0		ns	
		D/U after CLK↑	0		0			

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

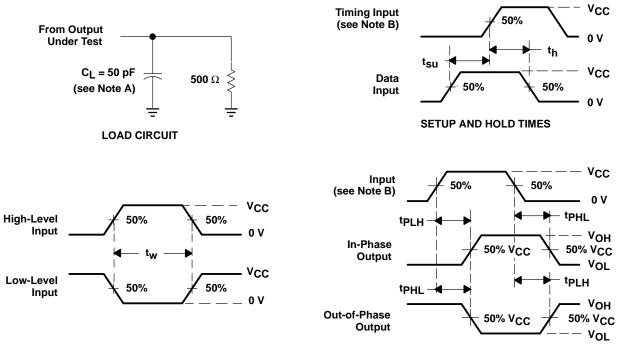
			T _A =	25°C	MIN	МАХ	UNIT
			MIN	MAX		WAA	UNIT
fclock	Clock frequency		0	100	0	100	MHz
tw	Pulse duration	LOAD low	4		4		ns
		CLK high or low	7.2		7.2		
	Setup time	Data before LOAD↑	3		3		ns
		CTEN before CLK [↑]	8		8		
t _{su}		D/U before CLK↑	8.5		8.5		
		LOAD inactive before CLK↑	2		2		
		Data after LOAD↑	1.5		1.5		
^t h	Hold time	CTEN after CLK↑	0.5		0.5		ns
		D/Ū after CLK↑	0		0		

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	Т	Α = 25° Ω	;			UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	UNIT
fmax			50	80		50		MHz
^t PLH	LOAD		3.7	10.7	13.4	3.7	14.9	
^t PHL	LOAD	Any Q	3.6	9.3	12.3	3.6	14.1	ns
^t PLH	LOAD	MAX/MIN	5	14.2	18.7	5	21.1	ns
^t PHL	LOAD		4.6	12.6	17.5	4.6	19.6	115
^t PLH	LOAD	RCO	5.2	15.4	20.2	5.2	22.9	ns
tPHL		KCO	6	15.7	21.6	6	24.7	115
^t PLH	A, B, C, or D	Any Q	3.4	9.8	12.3	3.4	13.8	ns
^t PHL	A, B, C, 01 D	Ally Q	3.5	8.9	12.1	3.5	13.7	115
^t PLH	A, B, C, or D	MAX/MIN	4.7	13.5	18.2	4.7	20.7	ns
^t PHL			4	11.8	17.1	4	19.3	ns
^t PLH	A, B, C, or D	A, B, C, or D RCO	5	14.7	19.9	5	22.5	ns
^t PHL		KOO	5.3	5.3 15.1	21.1	5.3	24.3	
^t PLH	CLK	CLK RCO	2.8	8.7	11.5	2.8	12.9	ns
^t PHL	OER	KOO	2.8	7.8	10.6	2.8	11.9	115
^t PLH	CLK	Any Q	2.2	7.5	9.8	2.2	11.1	ns
^t PHL	OER		2.7	7.5	11	2.7	12.7	115
^t PLH	CLK	MAX/MIN	3.7	9.9	12.2	3.7	13.8	ns
^t PHL	OER		4.1	10.2	14.4	4.1	16	113
^t PLH	D/U	RCO	4.1	11.2	14.4	4.1	15.9	ns
^t PHL	D/U	KOO	4.1	10.2	14.3	4.1	16.5	115
^t PLH	D/U	MAX/MIN	2.7	8.7	11.5	2.7	12.7	ns
^t PHL			3.1	8.3	11.8	3.1	13.6	115
^t PLH	CTEN	RCO	2.5	7.2	9	2.5	10.3	ns
^t PHL			2.6	6.6	8.8	2.6	10	115

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


DADAMETED	FROM TO	T	Α = 25°C	;	MIN	МАХ	UNIT	
fmax	(INPUT)	(OUTPUT)	MIN	TYP	MAX		MAX	UNIT
f _{max}			100	135		100		MHz
^t PLH	LOAD	Any Q	3.1	6.7	9.4	3.1	10.6	
^t PHL	LOAD	Ally Q	3	6.4	9	3	10.2	ns
^t PLH	LOAD	MAX/MIN	4.3	8.8	12.5	4.3	14.3	
^t PHL	LOAD		4	8.4	12	4	13.7	ns
^t PLH	LOAD	RCO	4.5	9.7	13.7	4.5	15.4	ns
^t PHL		RCO	5	10.1	14.4	5	16.3	115
^t PLH	A, B, C, or D	Any Q	2.9	6.2	8.7	2.9	9.8	
^t PHL	A, B, C, 0I D	Any Q	3	6.1	8.7	3	9.8 ns	
^t PLH	A, B, C, or D	MAX/MIN	4.1	8.4	12.2	4.1	13.7	ns
^t PHL	A, B, C, 01 D		3.5	8	11.8	3.5	13.4	
^t PLH	A, B, C, or D	A, B, C, or D RCO	4.3	9.2	13.5	4.3	15.1	
^t PHL			4.7	9.7	14	4.7	16	ns
^t PLH	CLK	RCO	2.4	5.9	8.4	2.4	9.1	ns
^t PHL	ULK	RCO	2.9	5.6	7.7	2.9	8.7	115
^t PLH	CLK	Any Q	1.9	5.2	7.6	1.9	8.4	
^t PHL	ULK	Ally Q	2.4	5.4	8	2.4	9.4	ns
^t PLH	CLK	MAX/MIN	3	6.5	8.8	3	10.4	
^t PHL	ULK		3.6	7.1	10.4	3.6	10.8	ns
^t PLH	D/U	RCO	3.5	7.2	10.2	3.5	11.3	200
^t PHL	D/0	RUU	3.5	6.9	10	3.5	11.5	ns
^t PLH	D/U	MAX/MIN	2.3	5.7	8.1	2.3	9.1	
^t PHL	D/0		2.7	5.9	8.6	2.7	9.7	ns
^t PLH	CTEN	RCO	2.1	4.9	6.8	2.1	7.7	200
^t PHL	GIEN	RCO	2.2	4.8	6.7	2.2	7.7	ns

operating characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER		TEST CONDITIONS	ТҮР	UNIT
Cpd	Power dissipation capacitance	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	66	pF

SCAS105A - FEBRUARY 1990 - REVISED APRIL 1993

PARAMETER MEASUREMENT INFORMATION

PULSE DURATION

PROPAGATION DELAY TIMES

- NOTES: A. CL includes probe and jig capacitance.
 - B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated