74AC11378 HEX D-TYPE FLIP-FLOP WITH CLOCK ENABLE SCAS150 - APRIL 1991 - REVISED APRIL 1993

 Contains Six D-Type Flip-Flops Clock Enable Latched to Avoid False 	DW OR N PACKAGE (TOP VIEW)
Clocking	
 Applications Include: Buffer/Storage 	$1Q$ $1 \sim 20$ CLKEN
Registers, Shift Registers, Pattern	2Q 2 19 1D
Generators	3Q 3 18 2D
Flow-Through Architecture Optimizes PCB	
Layout	GND 5 16 V _{CC}
 Center-Pin V_{CC} and GND Pin Configurations 	GND 6 15 V _{CC}
Minimize High-Speed Switching Noise	GND 7 14 4D
 EPIC ™ (Enhanced-Performance Implanted CMOS) 4 µm Process 	5Q U 9 12 U 6D
CMOS) 1-µm Process	6Q [10 11] CLK
• 500-mA Typical Latch-Up Immunity at 125°C	
Backage Ontions Include Disctic	

• Package Options Include Plastic Small-Outline Packages, and Standard Plastic 300-mil DIPs

description

These circuits are positive-edge-triggered D-type flip-flops with a clock-enable input. Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the clock-enable input (CLKEN) is low.

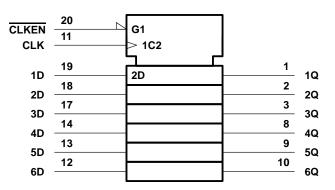
Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock inputs are at either the high or low level, the data (D) input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the clock-enable (\overline{CLKEN}) input.

The 74AC11378 is characterized for operation from – 40°C to 85°C.

	(each flip-flop)										
IN	IPUTS		OUTPUT								
CLKEN	CLK	D	Q								
Н	Х	Х	QO								
L	\uparrow	н	н								
L	\uparrow	L	L								
х	L	Х	QO								

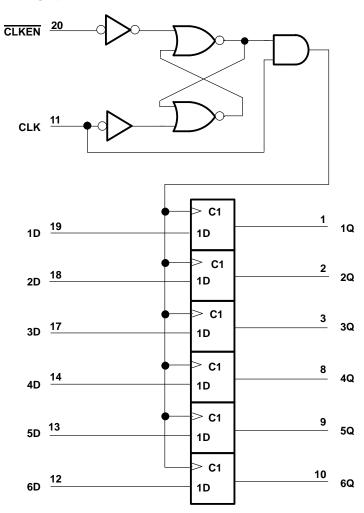
FUNCTION TABLE (each flip-flop)

EPIC is a trademark of Texas Instruments Incorporated.



POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

74AC11378 HEX D-TYPE FLIP-FLOP WITH CLOCK ENABLE


SCAS150 - APRIL 1991 - REVISED APRIL 1993

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

74AC11378 **HEX D-TYPE FLIP-FLOP** WITH CLOCK ENABLE

SCAS150 - APRIL 1991 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

	• •
Supply voltage range, V _{CC}	$\dots \dots $
Input voltage range, VI (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$\dots \dots \dots \dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND pins	±150 mA
Storage temperature range	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		$V_{CC} = 3 V$	2.1			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		V _{CC} = 5.5 V	3.85			
		V _{CC} = 3 V			0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$			1.35	V
		V _{CC} = 5.5 V			1.65	
VI	Input voltage		0		VCC	V
Vo	Output voltage		0		VCC	V
		V _{CC} = 3 V			-4	
ЮН	High-level output current	V _{CC} = 4.5 V			-24	mA
		V _{CC} = 5.5 V			-24	
		V _{CC} = 3 V			12	
IOL	Low-level output current	V _{CC} = 4.5 V			24	mA
		V _{CC} = 5.5 V			24	
$\Delta t / \Delta v$	Input transition rise or fall rate		0		10	ns/V
TA	Operating free-air temperature		-40		85	°C

recommended operating conditions

74AC11378 **HEX D-TYPE FLIP-FLOP** WITH CLOCK ENABLE

SCAS150 - APRIL 1991 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		Vaa	Т	A = 25°C	;	MIN	MAY	UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	WIIIN	WAA	UNIT
		3 V	2.9			2.9		
	I _{OH} = – 50 μA	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
$V_{OH} = -50 \mu\text{A} = \frac{3 \text{V}}{4.5 \text{V}} = \frac{2.9}{4.5 \text{V}} = \frac{4.5 \text{V}}{4.4} = \frac{4.5 \text{V}}{5.5 \text{V}} = \frac{4.5 \text{V}}{5.4 \text{V}} = \frac{4.5 \text{V}}{3.94} = \frac{4.5 \text{V}}{5.5 \text{V}} = \frac{4.5 \text{V}}{3.94} = \frac{4.5 \text{V}}{5.5 \text{V}} = \frac{4.5 \text{V}}{4.94} = \frac{4.5 \text{V}}{5.5 \text{V}} = \frac{4.5 \text{V}}{4.94} = \frac{3 \text{V}}{5.5 \text{V}} = \frac{4.5 \text{V}}{5.5 \text{V}} = \frac{3 \text{V}}{5.5 \text{V}} = \frac{4.5 \text{V}}{5.5 \text{V}} = \frac{3 \text{V}}{5$		2.48		V				
		4.5 V	3.94			3.8		
		5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
	I _{OL} = 50 μA	3 V			0.1		0.1	
		4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
VOL	I _{OL} = 12 mA	3 V	MIN TYP MAX V 2.9 2.9 V 4.4 4.4 V 5.4 5.4 V 2.58 2.48 V 2.58 2.48 V 3.94 3.8 V 4.94 4.8 V 0.1 0.1 V 0.1 0.1 V 0.1 0.1 V 0.36 0.44 V 0.1 ± 1 V ± 0.1 ± 1	V				
V _{OL} I _{OL} = 12 mA I _{OL} = 24 mA	1 04 mA	4.5 V			0.36		0.44	
	I _{OL} = 24 mA				0.36		0.44	1
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lj	V _I = V _{CC} or GND	5.5 V			±0.1		±1	μΑ
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			8		80	μA
Ci	V _I = V _{CC} or GND	5 V		4				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

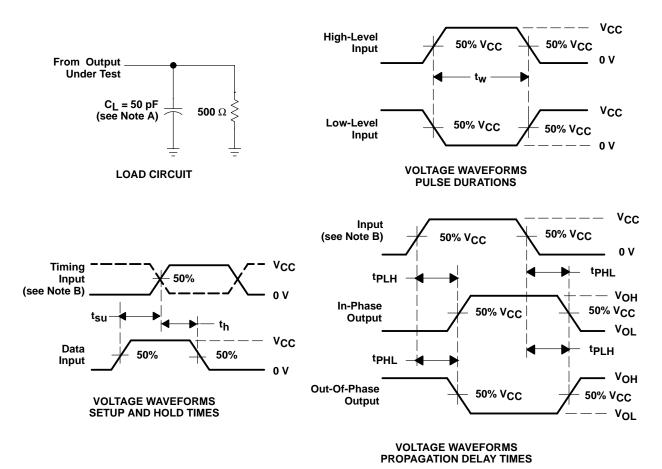
			T _A = 25°C				UNIT
			MIN	MAX		WIAA	UNIT
fclock	Clock frequency		0	90	0	90	MHz
tw	Pulse duration	CLK high or low	5.5		5.5		ns
+	Setup time, before CLK [↑]	Data	8		8		
t _{su}		CLKEN high or low	6.5		6.5		ns
4.	Hold time, after CLK↑	Data	0		0		
th		CLKEN high or low	0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 2	T _A = 25°C		MIN MAX	
			MIN	MAX		WAA	UNIT
fclock	Clock frequency		0	110	0	110	MHz
tw	Pulse duration	CLK high or low	4		4		ns
		Data	5		5		
t _{su}	Setup time, before CLK↑	CLKEN high or low	4.5		4.5		ns
÷.	Hold time, after CLK↑	Data	0		0		20
^t h		CLKEN high or low	0				ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	(T _A = 25°C		;	MIN	МАХ	UNIT
	(INPUT)		MIN	TYP	MAX	WIIN	WAA	
fmax			90	115		90		MHz
^t PLH	CLK	Amy O	3	7.6	9.5	3	10.9	
^t PHL		Any Q	3.6	9.8	12.8	3.6	14	ns


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C			MIN	мах	UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	WAX	
fmax			110	140		110		MHz
^t PLH	CLK	Any O	2.4	4.3	7	2.4	7.7	
^t PHL	ULK	Any Q	3	6.2	8.8	3	9.7	ns

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	30	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C₁ includes probe and jig capacitance.

B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated