### 74AC11652 OCTAL BUS TRANSCEIVER AND REGISTERS WITH 3-STATE OUTPUTS

SCAS088A - DECEMBER 1989 - REVISED APRIL 1996

- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Inverting Data Paths
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V<sub>CC</sub> and GND Configurations Minimize High-Speed Switching Noise
- EPIC<sup>™</sup> (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C

### description

The 74AC11652 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal

DW PACKAGE (TOP VIEW) **OEAB** 28 CLKAB 27 🛮 SAB Α1 2 26 🛮 B1 Α2 3 А3 4 25 B2 24 B3 A4 5 23 B4 GND 6 GND 22 V<sub>CC</sub> GND 21 V<sub>CC</sub> GND 9 20 B5 Α5 10 19 ∏ B6 18 B7 A6 11 П ва Α7 12 17 **A8** 13 16 CLKBA **OEBA** 15 **∏** SBA 14

storage registers. Output-enable (OEAB and  $\overline{\text{OEBA}}$ ) inputs are provided to control the transceiver functions. The select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 74AC11652.

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set remains at its last state.

The 74AC11652 is characterized for operation from -40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated



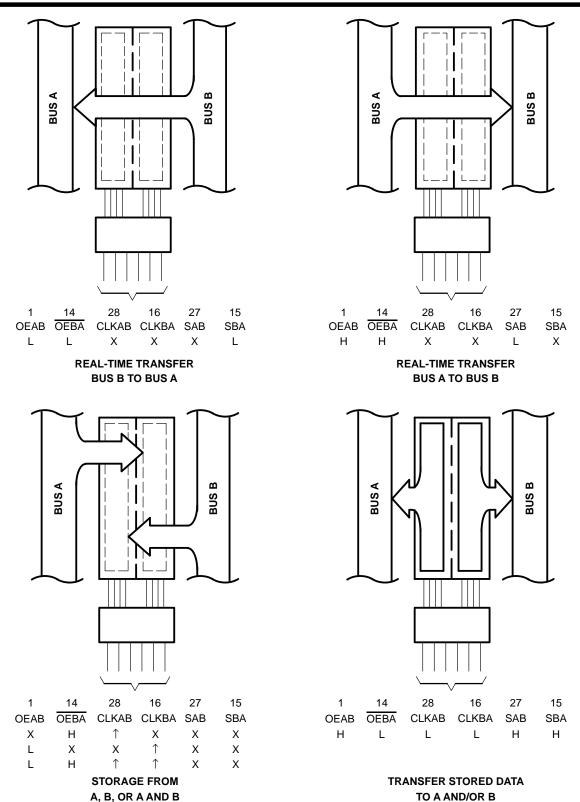
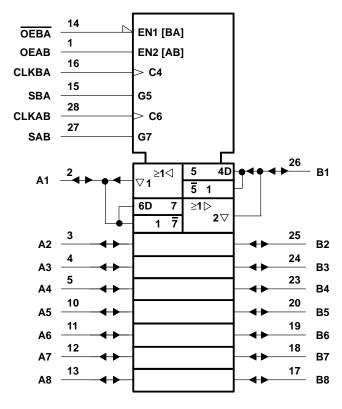



Figure 1. Bus-Management Functions



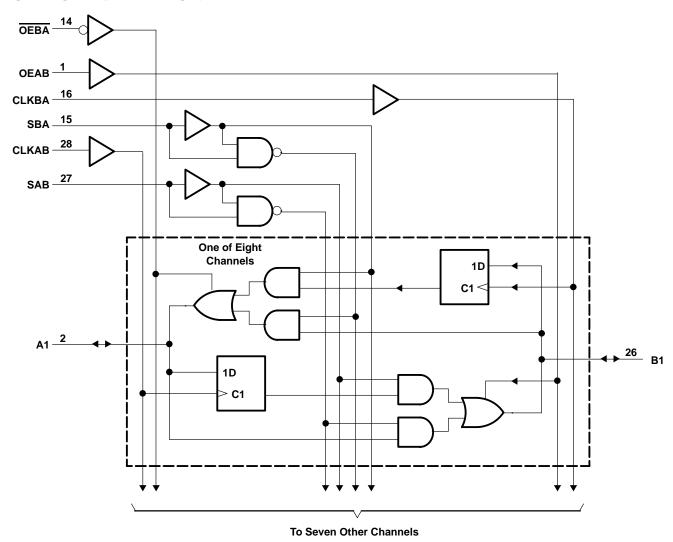

### **FUNCTION TABLE**

| INP  |      | INPU       | гѕ         |     |            | DATA                     | A 1/0†                   | OPERATION OR FUNCTION                             |
|------|------|------------|------------|-----|------------|--------------------------|--------------------------|---------------------------------------------------|
| OEAB | OEBA | CLKAB      | CLKBA      | SAB | SBA        | A1 THRU A8               | B1 THRU B8               | OPERATION OR FUNCTION                             |
| L    | Н    | L          | L          | Х   | Х          | Input                    | Input                    | Isolation                                         |
| L    | Н    | $\uparrow$ | $\uparrow$ | X   | X          | Input                    | Input                    | Store A and B data                                |
| Х    | Н    | $\uparrow$ | L          | X   | X          | Input                    | Unspecified <sup>‡</sup> | Store A, hold B                                   |
| Н    | Н    | $\uparrow$ | $\uparrow$ | X‡  | X          | Input                    | Output                   | Store A in both registers                         |
| L    | X    | L          | $\uparrow$ | Х   | X          | Unspecified <sup>‡</sup> | Input                    | Hold A, store B                                   |
| L    | L    | $\uparrow$ | $\uparrow$ | Х   | <b>X</b> ‡ | Output                   | Input                    | Store B in both registers                         |
| L    | L    | Χ          | Χ          | X   | L          | Output                   | Input                    | Real-time B data to A bus                         |
| L    | L    | Χ          | L          | X   | Н          | Output                   | Input                    | Stored B data to A bus                            |
| Н    | Н    | X          | Χ          | L   | X          | Input                    | Output                   | Real-time A data to B bus                         |
| Н    | Н    | L          | Χ          | Н   | X          | Input                    | Output                   | Stored A data to B bus                            |
| н    | L    | L          | L          | Н   | Н          | Output                   | Output                   | Stored A data to B bus and stored B data to A bus |

<sup>†</sup> The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or OEBA inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.

### logic symbol§




§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



<sup>‡</sup> Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.

### logic diagram (positive logic)



absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage range, V <sub>CC</sub>                                        | 0.5 V to 7 V                                     |
|------------------------------------------------------------------------------|--------------------------------------------------|
| Input voltage range, V <sub>I</sub> (see Note 1)                             | $\dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ |
| Output voltage range, V <sub>O</sub> (see Note 1)                            | $\dots$ -0.5 V to V <sub>CC</sub> + 0.5 V        |
| Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{CC}$ )                | ±20 mA                                           |
| Output clamp current, $I_{OK}$ ( $V_O < 0$ or $V_O > V_{CC}$ )               |                                                  |
| Continuous output current, $I_O$ ( $V_O = 0$ to $V_{CC}$ )                   | ±50 mA                                           |
| Continuous current through V <sub>CC</sub> or GND                            | ±200 mA                                          |
| Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2) | 1.7 W                                            |
| Storage temperature range, T <sub>stg</sub>                                  | 65°C to 150°C                                    |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

<sup>2.</sup> The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.



NOTES: 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

### recommended operating conditions

|                |                                    |                          | MIN  | NOM | MAX  | UNIT   |
|----------------|------------------------------------|--------------------------|------|-----|------|--------|
| Vcc            | Supply voltage                     |                          | 3    | 5   | 5.5  | V      |
|                |                                    | V <sub>CC</sub> = 3 V    | 2.1  |     |      |        |
| $V_{IH}$       | High-level input voltage           | $V_{CC} = 4.5 V$         | 3.15 |     |      | V      |
|                |                                    | $V_{CC} = 5.5 \text{ V}$ | 3.85 |     |      |        |
|                |                                    | V <sub>CC</sub> = 3 V    |      |     | 0.9  |        |
| $V_{IL}$       | Low-level input voltage            | $V_{CC} = 4.5 \text{ V}$ |      |     | 1.35 | V      |
|                |                                    | V <sub>CC</sub> = 5.5 V  |      |     | 1.65 |        |
| ٧ <sub>I</sub> | Input voltage                      |                          | 0    |     | VCC  | V      |
| ٧o             | Output voltage                     |                          | 0    |     | VCC  | V      |
|                |                                    | V <sub>CC</sub> = 3 V    |      |     | -4   |        |
| loH            | High-level output current          | V <sub>CC</sub> = 4.5 V  |      |     | -24  | mA     |
|                |                                    | V <sub>CC</sub> = 5.5 V  |      |     | -24  |        |
|                |                                    | V <sub>CC</sub> = 3 V    |      |     | 12   |        |
| loL            | Low-level output current           | V <sub>CC</sub> = 4.5 V  |      |     | 24   | mA     |
|                |                                    | V <sub>CC</sub> = 5.5 V  |      |     | 24   |        |
| Δt/Δν          | Input transition rice or fall rate | Control pins             | 0    |     | 5    | ns/V   |
| Δι/Δν          | Input transition rise or fall rate | Data                     | 0    |     | 10   | 115/ V |
| T <sub>A</sub> | Operating free-air temperature     |                          | -40  |     | 85   | °C     |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | TEST COMPLIANCE                      | W     | T,   | գ = 25°C |      | MAIN | MAY  | LINUT |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-------|------|----------|------|------|------|-------|
| PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KAWEIEK                 | TEST CONDITIONS                      | \ vcc | MIN  | TYP      | MAX  | MIN  | MAX  | UNIT  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                      | 3 V   | 2.9  |          |      | 2.9  |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | I <sub>OH</sub> = - 50 μA            | 4.5 V | 4.4  |          |      | 4.4  |      |       |
| $V_{OH} = -50 \mu\text{A} \\ I_{OH} = -50 \mu\text{A} \\ I_{OH} = -4 \text{mA} \\ I_{OH} = -4 \text{mA} \\ I_{OH} = -24 \text{mA} \\ I_{OH} = -75 \text{mA}^{\dagger} \\ I_{OH} = -75 \text{mA}^{\dagger} \\ V_{OL} = -75 \mu\text{A} \\ I_{OL} = 12 \text{mA} \\ I_{OL} = 24 \text{mA} \\ I_{OL} = 75 \text{mA}^{\dagger} \\ I_{OL} = 12 \text{mA} \\ I_{OL} = 75 \text{mA}^{\dagger} \\ I_{OL} = 75 \text{mA}^$ |                         | 5.4                                  |       |      |          |      |      |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.48                    |                                      | V     |      |          |      |      |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                      | 4.5 V | 3.94 |          |      | 3.8  |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IOH = -24 mA            | 5.5 V                                | 4.94  |      |          | 4.8  |      |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | $I_{OH} = -75 \text{ mA}^{\dagger}$  | 5.5 V |      |          |      | 3.85 |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                      | 3 V   |      |          | 0.1  |      | 0.1  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | I <sub>OL</sub> = 50 μA              | 4.5 V |      |          | 0.1  |      | 0.1  |       |
| V <sub>OL</sub> I <sub>OL</sub> I <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 5.5 V                                |       |      | 0.1      |      | 0.1  |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I <sub>OL</sub> = 12 mA | 3 V                                  |       |      | 0.36     |      | 0.44 | V    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | Jan 24 mA                            | 4.5 V |      |          | 0.36 |      | 0.44 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | IOL = 24 MA                          | 5.5 V |      |          | 0.36 |      | 0.44 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | I <sub>OL</sub> = 75 mA <sup>†</sup> | 5.5 V |      |          |      |      | 1.65 |       |
| lį                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control inputs          | $V_I = V_{CC}$ or GND                | 5.5 V |      |          | ±0.1 |      | ±1   | μΑ    |
| l <sub>OZ</sub> ‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A or B ports            | $V_O = V_{CC}$ or GND                | 5.5 V |      |          | ±0.5 |      | ±5   | μΑ    |
| ICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | $V_I = V_{CC}$ or GND, $I_O = 0$     | 5.5 V |      |          | 8    |      | 80   | μΑ    |
| Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control inputs          | $V_I = V_{CC}$ or GND                | 5 V   |      | 4.5      |      |      |      | pF    |
| Cio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A or B ports            | $V_O = V_{CC}$ or GND                | 5 V   |      | 12       |      |      |      | pF    |

<sup>†</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.



### 74AC11652 OCTAL BUS TRANSCEIVER AND REGISTERS WITH 3-STATE OUTPUTS

SCAS088A - DECEMBER 1989 - REVISED APRIL 1996

### timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 2)

|                 |                                            | T <sub>A</sub> = 25°C |     | MIN    | MAX | UNIT |
|-----------------|--------------------------------------------|-----------------------|-----|--------|-----|------|
|                 |                                            | MIN                   | MAX | IVIIIV | WAA | ONII |
| fclock          | Clock frequency                            | 0                     | 65  | 0      | 65  | MHz  |
| t <sub>W</sub>  | Pulse duration, CLK high or low            | 7.7                   |     | 7.7    |     | ns   |
| t <sub>su</sub> | Setup time, A or B before CLKAB↑ or CLKBA↑ | 6                     |     | 6      |     | ns   |
| th              | Hold time, A or B after CLKAB↑ or CLKBA↑   | 1                     | ·   | 1      | ·   | ns   |

# timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 2)

|                 |                                            | T <sub>A</sub> = 25°C |     | MIN    | MAX   | UNIT  |
|-----------------|--------------------------------------------|-----------------------|-----|--------|-------|-------|
|                 |                                            | MIN                   | MAX | IVIIIV | IVIAA | CINIT |
| fclock          | Clock frequency                            | 0                     | 105 | 0      | 105   | MHz   |
| t <sub>W</sub>  | Pulse duration, CLK high or low            | 4.8                   |     | 4.8    |       | ns    |
| t <sub>su</sub> | Setup time, A or B before CLKAB↑ or CLKBA↑ | 4.5                   |     | 4.5    |       | ns    |
| th              | Hold time, A or B after CLKAB↑ or CLKBA↑   | 1                     |     | 1      |       | ns    |

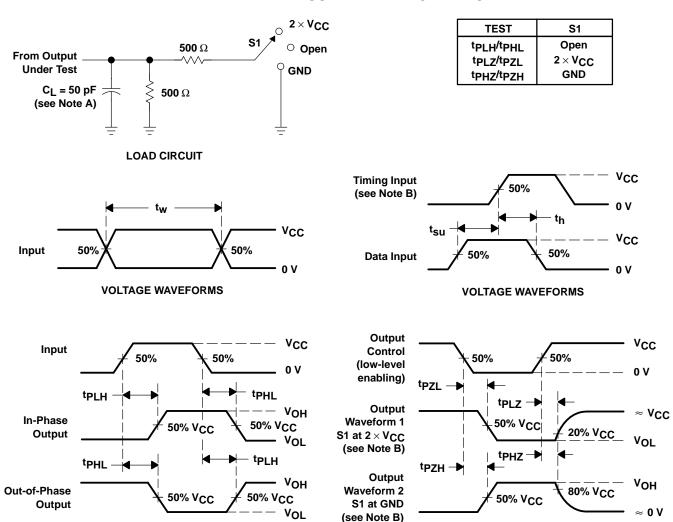
## switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 2)

| PARAMETER        | FROM            | то       | T,  | չ = 25°C | ;    | MIN N  | MAX  | UNIT |
|------------------|-----------------|----------|-----|----------|------|--------|------|------|
| PARAMETER        | (INPUT)         | (OUTPUT) | MIN | TYP      | MAX  | IVIIIV | WAX  | UNIT |
| f <sub>max</sub> |                 |          | 65  |          |      | 65     |      | MHz  |
| <sup>t</sup> PLH | A or B          | B or A   | 2.9 | 8.5      | 11.1 | 2.9    | 12.9 | ns   |
| <sup>t</sup> PHL |                 | BUIA     | 3.9 | 10.3     | 12.9 | 3.9    | 14.2 | 115  |
| <sup>t</sup> PLH | CLKBA or CLKAB  | A or B   | 4.3 | 11.2     | 14.3 | 4.3    | 16.2 | ns   |
| <sup>t</sup> PHL | CLNDA OI CLNAD  | AOID     | 5.3 | 13.1     | 16.2 | 5.3    | 17.8 | 115  |
| <sup>t</sup> PLH | SBA or SAB†     | A or B   | 3.4 | 9.4      | 12   | 3.4    | 13.7 | ns   |
| <sup>t</sup> PHL | (A or B high)   | AOID     | 4.7 | 11.5     | 14.3 | 4.7    | 15.6 | 15.6 |
| <sup>t</sup> PLH | SBA or SAB†     | A or B   | 3.9 | 10.5     | 13.3 | 3.9    | 14.9 | ns   |
| <sup>t</sup> PHL | (A or B low)    | AUID     | 4.8 | 12.1     | 16.3 | 4.8    | 17.7 | 110  |
| <sup>t</sup> PZH | <del>OEBA</del> | А        | 4.3 | 11.1     | 14.5 | 4.3    | 16.5 | ns   |
| <sup>t</sup> PZL | OEBA            | ۸        | 5.2 | 14.4     | 19.8 | 5.2    | 22   | 115  |
| <sup>t</sup> PHZ | OFDA            | А        | 3.7 | 6.4      | 8.1  | 3.7    | 8.5  | ns   |
| tPLZ             | OEBA            | ٨        | 3.5 | 6        | 7.8  | 3.5    | 8.2  | 110  |
| <sup>t</sup> PZH | OEAB            | В        | 4.7 | 11.6     | 15   | 4.7    | 16.9 | ns   |
| tPZL             | OEAB            | ٥        | 5.6 | 14.8     | 19.9 | 5.6    | 21.9 | 115  |
| <sup>t</sup> PHZ | OEAB            | В        | 4   | 6.6      | 8.2  | 4      | 8.6  | ns   |
| tpLZ             | OLAB            | ט        | 3.5 | 6.1      | 7.7  | 3.5    | 8    | 115  |

<sup>†</sup> These parameters are measured with the internal output state of the storage register opposite that of the bus input.



### 74AC11652 **OCTAL BUS TRANSCEIVER AND REGISTERS** WITH 3-STATE OUTPUTS SCAS088A - DECEMBER 1989 - REVISED APRIL 1996


# switching characteristics over recommended operating free-air temperature range, $V_{CC}$ = 5 V $\pm$ 0.5 V (unless otherwise noted) (see Figure 2)

| PARAMETER        | FROM                        | то       | T,  | չ = 25°C | ;    | MIN MA | MAX   | UNIT |
|------------------|-----------------------------|----------|-----|----------|------|--------|-------|------|
| FARAMETER        | (INPUT)                     | (OUTPUT) | MIN | TYP      | MAX  | IVIIIV | IVIAA | ONIT |
| f <sub>max</sub> |                             |          | 105 |          |      | 105    |       | MHz  |
| t <sub>PLH</sub> | A or B                      | B or A   | 2.4 | 5.2      | 7.6  | 2.4    | 8.6   | ns   |
| tPHL             |                             | BUIA     | 3.1 | 6        | 8.7  | 3.1    | 9.6   | 115  |
| tPLH             | CLKBA or CLKAB              | A or B   | 3.6 | 6.7      | 9.5  | 3.6    | 10.7  | ns   |
| t <sub>PHL</sub> |                             | AUID     | 4.4 | 7.8      | 10.8 | 4.4    | 12    | 110  |
| t <sub>PLH</sub> | SBA or SAB<br>(A or B high) | A or B   | 2.9 | 5.6      | 8.1  | 2.9    | 9.1   | ns   |
| t <sub>PHL</sub> |                             | AUID     | 3.8 | 6.9      | 9.6  | 3.8    | 10.7  | 110  |
| t <sub>PLH</sub> | SBA or SAB                  | A or B   | 3.3 | 6.2      | 8.8  | 3.3    | 9.9   | ns   |
| t <sub>PHL</sub> | (A or B low)                | AUID     | 4   | 7.1      | 9.9  | 4      | 10.9  | 110  |
| <sup>t</sup> PZH | OFDA                        | A        | 3.3 | 6.6      | 9.6  | 3.3    | 10.9  | ns   |
| tPZL             | OEBA                        | A        | 4.2 | 7.4      | 10.9 | 4.2    | 12.2  | 110  |
| t <sub>PHZ</sub> | OFDA                        | А        | 3.6 | 5.5      | 7.2  | 3.6    | 7.6   | ns   |
| tPLZ             | OEBA                        | A        | 3.3 | 5        | 6.7  | 3.3    | 7.1   | 110  |
| <sup>t</sup> PZH | OEAR                        | В        | 4.1 | 7.2      | 10.1 | 4.1    | 11.3  | 20   |
| tpZL             | OEAB                        | ٥        | 4.6 | 7.9      | 11.1 | 4.6    | 12.3  | ns   |
| t <sub>PHZ</sub> | OEAB                        | В        | 3.9 | 5.6      | 7.3  | 3.9    | 7.6   | ns   |
| tPLZ             | OLAD                        | ٥        | 3.4 | 5.2      | 6.8  | 3.4    | 7.2   | 115  |

### operating characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25^{\circ}\text{C}$

| PARAMETER       |                                               |                  | TEST CON        | TYP       | UNIT |    |
|-----------------|-----------------------------------------------|------------------|-----------------|-----------|------|----|
| C <sub>pd</sub> | Dower dissination conscitones nor transceiver | Outputs enabled  | C 50 pF         | f = 1 MHz | 60   | pF |
|                 | Power dissipation capacitance per transceiver | Outputs disabled | $C_L = 50 pF$ , | f = 1 MHz | 14   |    |

#### PARAMETER MEASUREMENT INFORMATION



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

**VOLTAGE WAVEFORMS** 

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_Q = 50 \Omega$ ,  $t_f = 3$  ns.

**VOLTAGE WAVEFORMS** 

D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated