74AC11874 DUAL 4-BIT D-TYPE EDGE-TRIGGERED FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS236 - MARCH 1990 - REVISED APRIL 1993

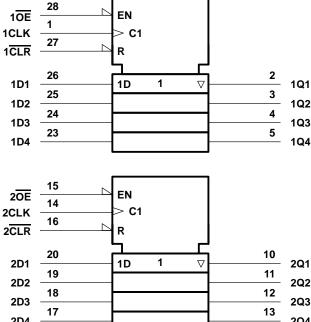
 3-State Buffer-Type Outputs Drive Bus Lines Directly 	DW OR NT PACKAGE (TOP VIEW)
Asynchronous Clear	1CLK 1 28 10E
 Flow-Through Architecture Optimizes PCB Layout 	1Q1 2 27 1CLR 1Q2 3 26 1D1
 Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise 	1Q3 4
 EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process 	GND
 500-mA Typical Latch-Up Immunity at 125°C 	GND 8 21 V _{CC} GND 9 20 2D1
Package Options Include Plastic Small-Outline Packages and Standard	2Q1 10 19 2D2 2Q2 11 18 2D3 2Q3 12 17 2D4
Plastic 300-mil DIPs description	2Q4

This dual 4-bit D-type edge-triggered flip-flop features 3-state outputs designed specifically for bus driving. This makes these devices particularly suitable for implementing buffer registers, I/O ports, and working registers.

The flip-flops enter data on the low-to-high transition of the clock. The 74AC11874 has clear (1CLR and 2CLR) inputs and noninverting outputs. Taking CLR low causes the four Q outputs to go low independently of the clock.

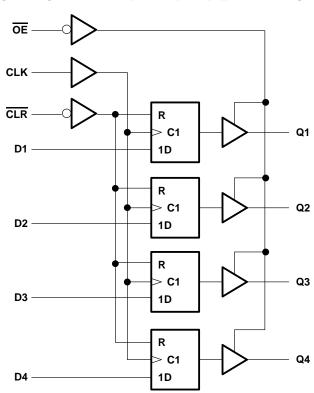
The 74AC11874 is characterized for operation from −40°C to 85°C.

FUNCTION TABLE (each 4-bit flip-flop)


	INP	OUTPUT		
ŌĒ	CLR	CLK	D	Q
L	L	Х	Χ	L
L	Н	\uparrow	Н	Н
L	Н	\uparrow	L	L
L	Н	L	Χ	Q_0
Н	Χ	Χ	Χ	Z

EPIC is a trademark of Texas Instruments Incorporated.

SCAS236 - MARCH 1990 - REVISED APRIL 1993


logic symbol†

logic diagram, each quad flip-flop (positive logic)

²Q1 2Q2 2Q3 2D4 2Q4

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND pins	±200 mA
Storage temperature range	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
٧ _{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V
		$V_{CC} = 5.5 \text{ V}$	3.85			
		V _{CC} = 3 V			0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	V
		$V_{CC} = 5.5 \text{ V}$			1.65	
٧ _I	Input voltage		0		VCC	٧
٧o	Output voltage		0		VCC	V
		V _{CC} = 3 V			-4	
IОН	High-level output current	V _{CC} = 4.5 V			-24	mA
VIH VIL VI VO		$V_{CC} = 5.5 \text{ V}$			-24	
		V _{CC} = 3 V			12	
lOL	Low-level output current	V _{CC} = 4.5 V			24	mA
		$V_{CC} = 5.5 \text{ V}$			24	
Δt/Δν	Input transition rise or fall rate		0		10	ns/V
TA	Operating free-air temperature		-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V	T,	_Δ = 25°C	;	MIN		LINIT
PARAMETER		vcc	MIN	TYP	MAX	IVIIN	MAX	UNIT
			2.9			2.9		
	$I_{OH} = -50 \mu\text{A}$	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
VOH	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
		4.5 V	3.94			3.8		
	I _{OH} = – 24 mA	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
	I _{OL} = 50 μA	3 V			0.1		0.1	
		4.5 V			0.1		0.1	V
		5.5 V			0.1		0.1	
VoL		3 V			0.36		0.44	
	I _{OL} = 24 mA	4.5 V			0.36		0.44	
	IOL = 24 IIIA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Ci	$V_I = V_{CC}$ or GND	5 V		4.5				pF
Co	$V_O = V_{CC}$ or GND	5 V		13.5			·	pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

74AC11874 DUAL 4-BIT D-TYPE EDGE-TRIGGERED FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS236 - MARCH 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	MIN	MAX	UNIT
			MIN	MAX	IVIIIV	IVIAA	UNIT
fclock	Clock frequency		0	60	0	60	MHz
	Pulse duration	CLR low	4		4		
t _W		CLK high or low	8.3		8.3		ns
	Setup time before CLK↑	Data	3		3		20
t _{su}		CLR inactive	1.5		1.5		ns
th	Hold time after CLK↑	Data	1		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	MIN	MAX	UNIT
			MIN	MAX	IVIIIV	IVIAA	UNIT
fclock	Clock frequency		0	125	0	125	MHz
	Pulse duration	CLR low	4		4		20
t _W		CLK high or low	4		4		ns
	Setup time before CLK↑	Data	2		2		20
t _{su}		CLR inactive	1.5		1.5		ns
t _h	Hold time after CLK↑	Data	1		1		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO	T,	գ = 25°C	;	MIN	MAX	UNIT
PARAMETER	(INPUT) (OUTPUT)	MIN	TYP	MAX	IVIIIN	IVIAA	UNIT	
f _{max}			60			60		MHz
^t PLH	CLK	Q	2.9	7.3	11	2.9	12.5	ns
^t PHL			3.7	8.8	13.1	3.7	14.6	3 113
^t PHL	CLR	Q	3.9	9.3	14	3.9	15.7	ns
^t PZH	OE	Q	2.1	5.6	8.7	2.1	9.8	ns
^t PZL	OE	3	3.1	8.4	13.1	3.1	14.9	110
^t PHZ	OE	Q	4	6.2	8.2	4	8.7	ns
^t PLZ	OE .	y	3.9	6.3	8.5	3.9	9	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	գ = 25°C	;	MIN	MAX	UNIT
TANAMILILIN	(INPUT)	(OUTPUT)		TYP	MAX	IVIIIV	WAA	ONIT
f _{max}			125			125		MHz
^t PLH	CLK		2.3	5.2	7.4	2.3	8.3	ns
^t PHL		Q	2.9	6.1	8.6	2.9	9.6	115
^t PHL	CLR	Q	2.9	6.3	8.9	2.9	10	ns
^t PZH	OE	Q	1.5	4	5.9	1.5	6.6	ns
^t PZL	OE	y	2.3	5.4	7.8	2.3	8.8	115
^t PHZ	OE	Q	3.8	5.7	7.3	3.8	7.7	ns
^t PLZ	OE .	y	3.7	5.5	7.1	3.7	7.5	115

SCAS236 - MARCH 1990 - REVISED APRIL 1993

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance per flip-flop	Outputs enabled	C FO pE	31	~F
	Power dissipation capacitance per hip-hop	Outputs disabled	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	13

PARAMETER MEASUREMENT INFORMATION **TEST** S1 500 Ω O Open Open tPLH/tPHL From Output $2 \times V_{CC}$ tPLZ/tPZL **GND Under Test** GND tPHZ/tPZH $C_L = 50 pF$ $\textbf{500}\,\Omega$ (see Note A) LOAD CIRCUIT FOR OUTPUTS VCC Input 50% 50% 0 V **VCC** 50% **Timing Input VOLTAGE WAVEFORMS** 0 V **PULSE DURATION** tsu **VCC Data Input VCC** 50% 50% Output 0 V Control 50% 50% (low-level **VOLTAGE WAVEFORMS** enabling) **SETUP AND HOLD TIMES** tPLZ-**VCC** ≈VCC Input Output (see Note B) 50% 50% Waveform 1 50%V_{CC} 20%V_{CC} 0 V S1 at 2 × V_{CC} VOL (see Note C) ^tPLH ^tPHL ^tPZH-▶ Output VOH Vон Waveform 2 80%V_{CC} Output 50%V_{CC} 50%V_{CC} 50%VCC S1 at GND (see Note D) (see Note C) VOL 0 V **VOLTAGE WAVEFORMS** VOLTAGE WAVEFORMS **PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES**

- NOTES: A. $\,C_L$ includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns. For testing pulse duration: $t_f = t_f = 1$ to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated