74AC20 Dual 4-Input NAND Gate

SEMICONDUCTOR^{IM}

Dual 4-Input NAND Gate

General Description

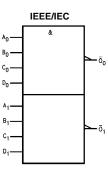
FAIRCHILD

The AC20 contains four 4-input NAND gates.

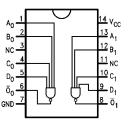
Features

■ I_{CC} reduced by 50%

Outputs source/sink 24 mA


Ordering Code:

Order Number	Package Number	Package Description					
74AC20SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body					
74AC20SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74AC20MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
74AC20PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide					


v.DataSheet4U.com

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description			
A_n, B_n, C_n, D_n	Inputs			
Ōn	Outputs			

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

© 1999 Fairchild Semiconductor Corporation DS009918

74AC20

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Diode Current (I _{OK})	
$V_0 = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

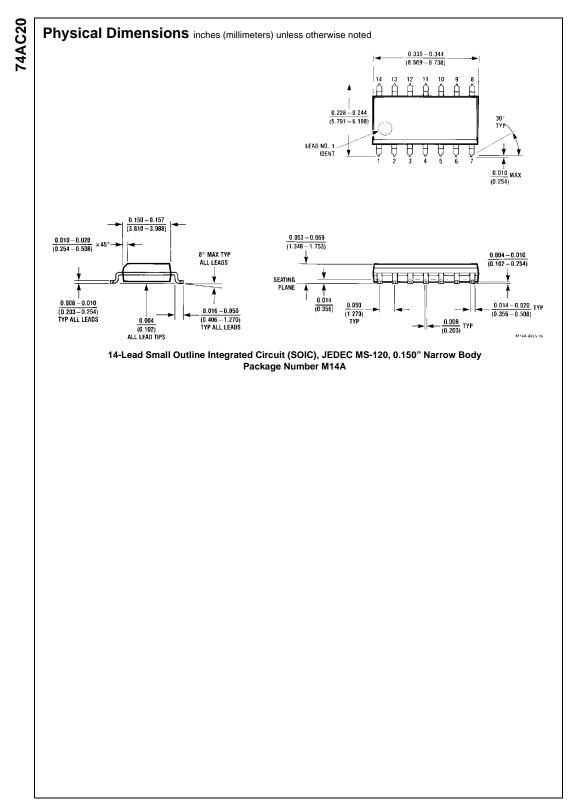
DC Electrical Characteristics

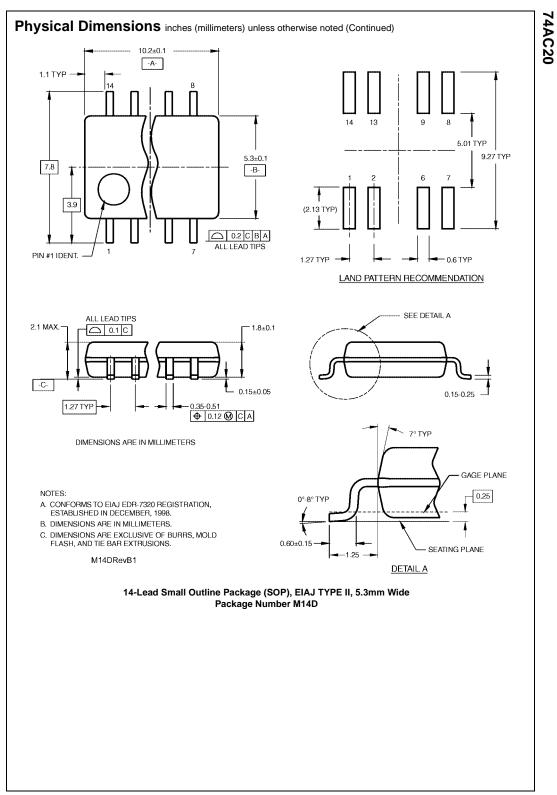
Symbol	Parameter Minimum HIGH Level	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol		(V) 3.0	Тур	Guaranteed Limits			
/ _{IH}			1.5	2.1	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$
		5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note
/ _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
IN	Maximum Input	5.5		± 0.1	± 1.0	μA	$V_1 = V_{CC_1} GND$
(Note 4)	Leakage Current	5.5		± 0.1	± 1.0	μΑ	$v_{I} = v_{CC}$, GND
OLD	Minimum Dynamic	5.5			75	mA	$V_{OLD} = 1.65V Max$
OHD	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
сс	Maximum Quiescent	5.5		2.0	20.0	μΑ	$V_{IN} = V_{CC}$
(Note 4)	Supply Current						or GND

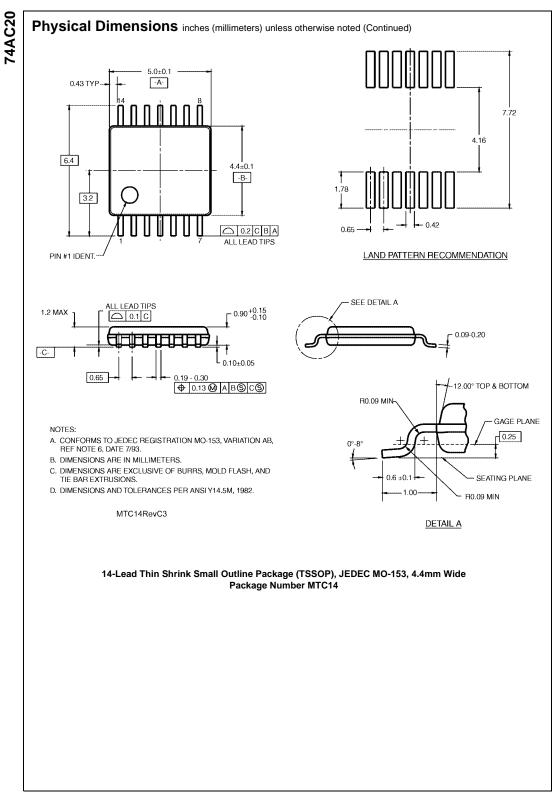
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

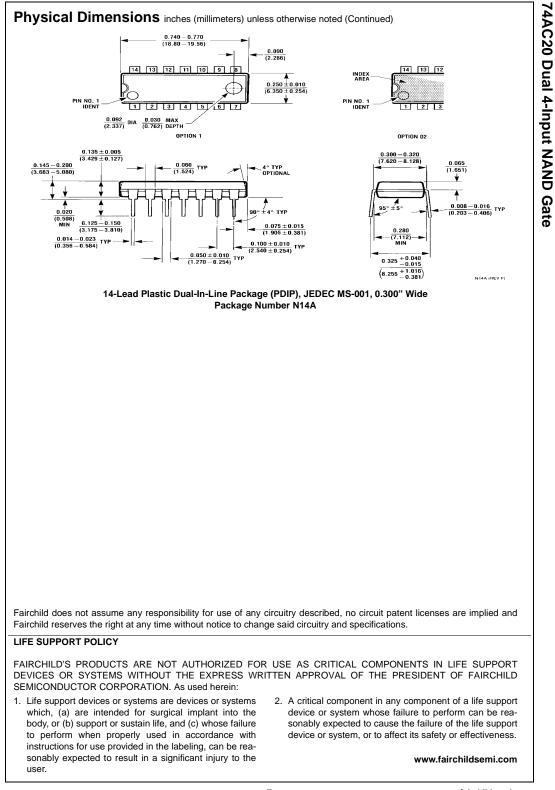
Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

AC Electrical Characteristics


Symbol	Parameter	v _{cc} (v)	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units
		(Note 5)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	2.0	6.0	8.5	1.5	10.0	ns
		5.0	1.5	5.0	7.0	1.0	8.0	115
t _{PHL}	Propagation Delay	3.3	1.5	5.0	7.0	1.0	9.0	ns
		5.0	1.5	4.0	6.0	1.0	7.0	115


Note 5: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	40.0	pF	$V_{CC} = 5.0V$

74AC20

