74F533 Octal Transparent Latch with 3-STATE Outputs

74F533 Octal Transparent Latch with 3-STATE Outputs

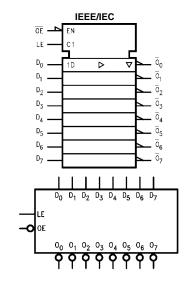
General Description

FAIRCHILD

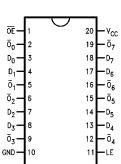
SEMICONDUCTOR

The 74F533 consists of eight latches with 3-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state. The 74F533 is the same as the 74F373, except that the outputs are inverted.

Features


- Eight latches in a single package
- 3-STATE outputs for bus interfacing
- Inverted version of the 74F373

Ordering Code:


Order Number	Package Number	Package Description
74F533SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F533SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F533PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel Specify	by appending the suffix letter "X" to the ordering code

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

© 2000 Fairchild Semiconductor Corporation DS009548

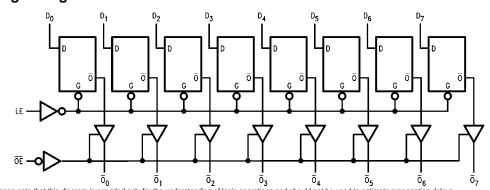
74F533

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ -D ₇	Data Inputs	1.0/1.0	20 µA/–0.6 mA		
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 µA/–0.6 mA		
OE	Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
$\overline{O}_0 - \overline{O}_7$	Complementary 3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)		

Function Table

	Inputs				
LE	OE	D	ō		
н	L	Н	L		
н	L	L	н		
L	L	х	¯¯O₀ Z		
х	н	х	Z		


H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Logic Diagram

Functional Description

The 74F533 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

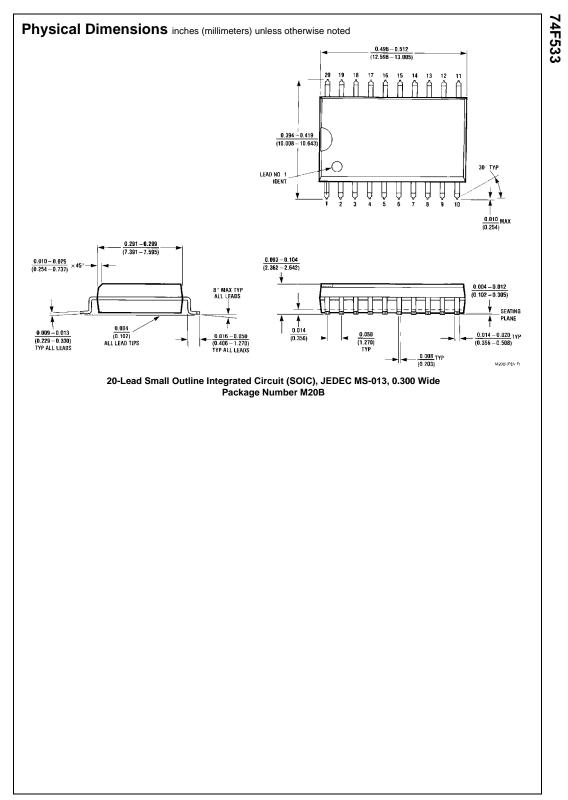
Recommended Operating Conditions

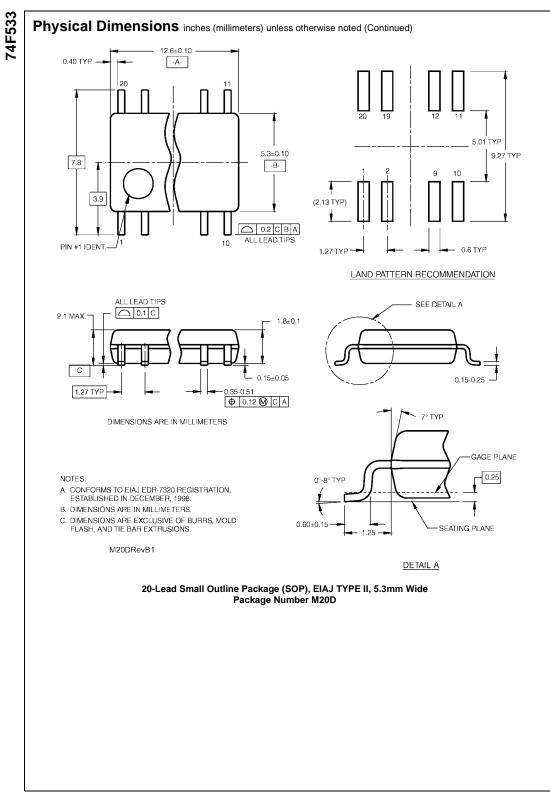
Free Air Ambient Temperature Supply Voltage 74F533

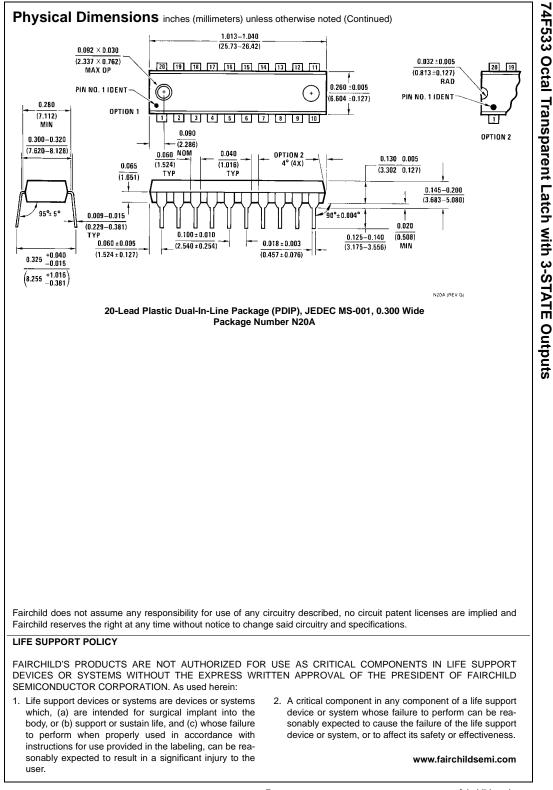
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parame	ter	Min	Тур	Max	Units	V _{CC}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Volt	np Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH 10% V _{CC}		2.5					I _{OH} = -1 mA	
	Voltage	10% V _{CC}	2.4			v	Min	$I_{OH} = -3 \text{ mA}$	
		5% V _{CC}	2.7			v	IVIIN	$I_{OH} = -1 \text{ mA}$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$	
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA	
IIH	Input HIGH Current				5.0	μA	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current	H Current			7.0	μA	Max	V _{IN} = 7.0V	
	Breakdown Test				7.0	μΑ	IVIAX	v _{IN} = 7.0v	
I _{BVIT}	Input HIGH Current				0.5	mA	Max	V _{IN} = 5.5V	
	Breakdown (I/O)				0.5	IIIA	IVIAX	v _{IN} = 5.5 v	
I _{CEX}	Output HIGH				50		Max	V V	
	Leakage Current				50	μA	iviax	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Currer	nt			50	μΑ	Max	V _{OUT} = 2.7V	
I _{OZL}	Output Leakage Currer	nt			-50	μA	Max	$V_{OUT} = 0.5V$	
I _{OS}	Output Short-Circuit Cu	irrent	-60		-150	mA	Max	V _{OUT} = 0V	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCZ}	Power Supply Current			41	61	mA	Max	V _O = HIGH Z	


Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		
		Min	Тур	Max	Min	Мах	Min	Max	1	
t _{PLH}	Propagation Delay	4.0	6.7	9.0	4.0	12.0	4.0	10.0		
t _{PHL}	D_n to \overline{O}_n	2.5	4.4	7.0	2.5	9.0	2.5	8.0	ns	
t _{PLH}	Propagation Delay	5.0	7.1	11.0	5.0	14.0	5.0	13.0		
t _{PHL}	LE to On	3.0	4.7	7.0	3.0	9.0	3.0	8.0	ns	
t _{PZH}	Output Enable Time	2.0	5.9	10.0	2.0	12.5	2.0	11.0	ns	
t _{PZL}		2.0	5.6	7.5	2.0	10.5	2.0	8.5	ns	
t _{PHZ}	Output Disable Time	1.5	3.4	6.5	1.5	8.5	1.5	7.0		
t _{PLZ}		1.5	2.7	5.5	1.5	7.5	1.5	6.5	ns	

AC Operating Requirements

		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$		Units	
Symbol	Parameter								
		Min	Max	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0		2.0		20	
t _S (L)	D _n to LE	2.0		2.0		2.0		ns	
t _H (H)	Hold Time, HIGH or LOW	3.0		3.0		3.0			
t _H (L)	D _n to LE	3.0		3.0		3.0		ns	
t _W (H)	LE Pulse Width, HIGH	6.0		6.0		6.0		ns	

www.fairchildsemi.com