74F544 Octal Registered Transceiver

FAIRCHILD

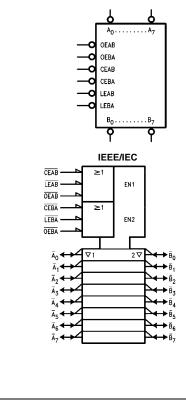
SEMICONDUCTOR

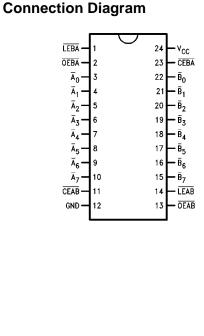
74F544 Octal Registered Transceiver

General Description

The 74F544 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 24 mA while the B outputs are rated for 64 mA. The 74F544 inverts data in both directions.

Features


- 8-bit octal transceiver
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- A outputs sink 24 mA, B outputs sink 64 mA


Ordering Code:

Order Number	Package Number	Package Description					
74F544SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F544MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide					
74F544SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

© 1999 Fairchild Semiconductor Corporation DS009555

74F544

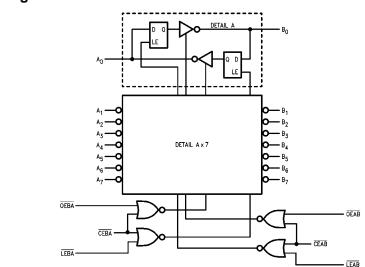
Unit Loading/Fan Out

Dia Managa	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
OEAB	A-to-B Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
OEBA	B-to-A Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
CEAB	A-to-B Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
CEBA	B-to-A Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
LEAB	A-to-B Latch Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
LEBA	B-to-A Latch Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
$\overline{A}_0 - \overline{A}_7$	A-to-B Data Inputs or	3.5/1.083	70 μA/–650 μA		
	B-to-A 3-STATE Outputs	150/40(33.3)	–3 mA/24 mA (20 mA)		
$\overline{B}_0 - \overline{B}_7$	B-to-A Data Inputs or	3.5/1.083	70 μA/–650 μA		
	A-to-B 3-STATE Outputs	600/106.6(80)	–12 mA/64 mA (48 mA)		

Functional Description

The 74F544 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (CEAB) input must be LOW in order to enter data from $\overline{A}_0-\overline{A}_7$ or take data from $\overline{B}_0-\overline{B}_7$, as indicated in the Data I/O Control Table. With \overline{CEAB} LOW, a LOW signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With \overline{CEAB} and \overline{OEAB} both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the \overline{CEBA} , LEBA and \overline{OEBA} inputs.

Data I/O Control Table


		Inputs		Latch	Output
C	EAB	LEAB	OEAB	Status	Buffers
	Н	Х	Х	Latched	High Z
	Х	н	Х	Latched	—
	L	L	Х	Transparent	—
	Х	Х	н	—	High Z
	L	х	L	—	Driving
H = H	IIGH Volt	age Level			

L = LOW Voltage Level

X = Immaterial

Note: A-to-B data flow shown; B-to-A flow control is the same, except using $\overline{CEBA}, \overline{LEBA}$ and \overline{OEBA}

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) -65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

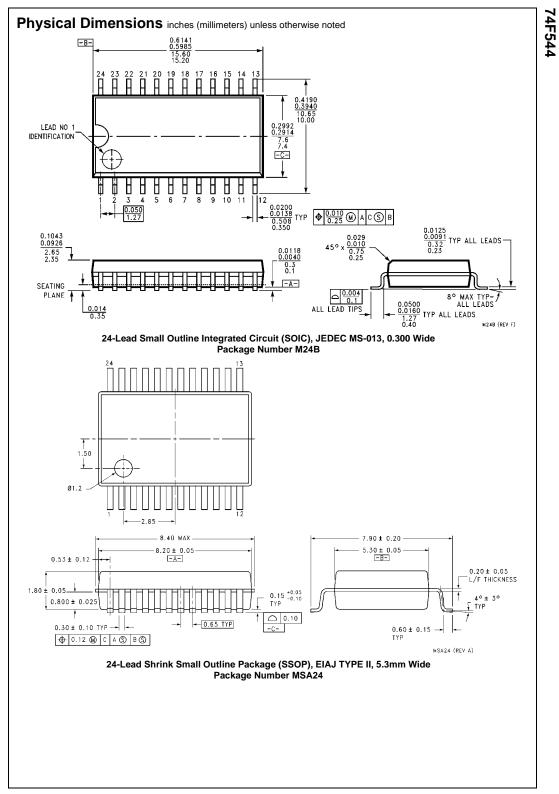
Recommended Operating Conditions

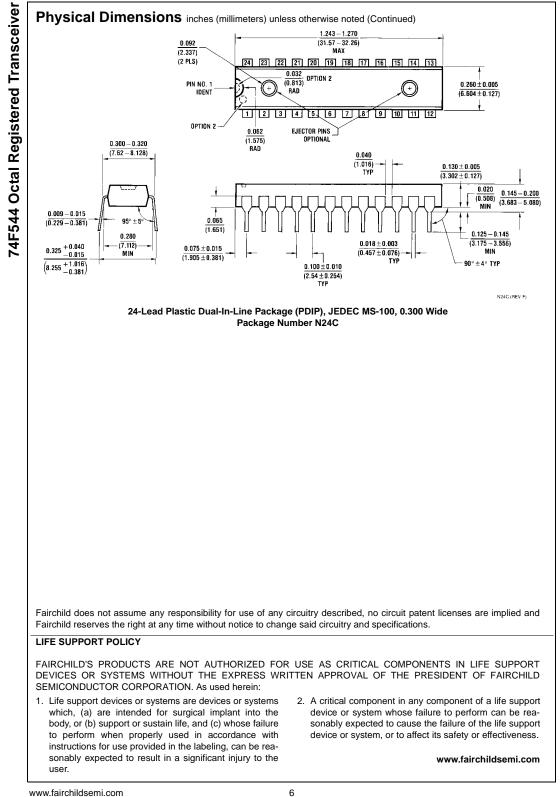
Free Air Ambient Temperature Supply Voltage

0°C to +70°C +4.5V to +5.5V 74F544

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signa	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA,	
					-1.2	v	IVIIN	$(except \overline{A}_n, \overline{B}_n)$	
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (\overline{A}_n)$	
	Voltage	10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (\overline{A}_n, \overline{B}_n)$	
		10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (\overline{B}_n)$	
		5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA} (\overline{A}_{n})$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (\overline{A}_n, \overline{B}_n)$	
V _{OL}	Output LOW	10% V _{CC}			0.5			$I_{OL} = 24 \text{ mA} (\overline{A}_n)$	
0L	Voltage	10% V _{CC}			0.55	V	Min	$I_{OL} = 64 \text{ mA} (\overline{B}_n)$	
IIH	Input HIGH				20.0				
	Current				5.0	μA	Max	$V_{IN} = 2.7V \text{ (except } \overline{A}_n, \overline{B}_n)$	
I _{BVI}	Input HIGH Current				7.0				
	Breakdown Test				7.0	μA	Max	$V_{IN} = 7.0V \text{ (except } \overline{A}_n, \overline{B}_n)$	
I _{BVIT}	Input HIGH Current				0.5		Max	$V_{IN} = 5.5V (\overline{A}_n, \overline{B}_n)$	
	Breakdown (I/O)				0.5	mA	IVIAX	$v_{IN} = 5.5 v (A_n, B_n)$	
ICEX	Output HIGH				250	μA	Max	$V_{OUT} = V_{CC} (\overline{A}_n, \overline{B}_n)$	
	Leakage Current				250	μΑ	IVIAX	$v_{OUT} = v_{CC} (A_n, D_n)$	
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$	
	Circuit Current							All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V \ (\overline{OEAB}, \overline{OEBA})$	
					-1.2		max	$V_{IN} = 0.5V \ (\overline{CEAB}, \ \overline{CEBA})$	
I _{IH} + I _{OZH}	Output Leakage Current				70	μΑ	Max	$V_{OUT} = 2.7V (\overline{A}_n, \overline{B}_n)$	
I _{IL} + I _{OZL}	Output Leakage Current				-650	μΑ	Max	$V_{OUT} = 0.5V (\overline{A}_n, \overline{B}_n)$	
los	Output Short-Circuit Current		-60		-150		1	$V_{OUT} = 0V(\overline{A}_n)$	
			-100		-225	mA Ma	Max	$V_{OUT} = 0V (\overline{B}_n)$	
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	$V_{OUT} = 5.25V (\overline{A}_n, \overline{B}_n)$	
Іссн	Power Supply Current			70	105	mA	Max	$V_0 = HIGH$	
ICCL	Power Supply Current			85	130	mA	Max	V _O = LOW	
I _{CCZ}	Power Supply Current			83	125	mA	Max	V _O = HIGH Z	


DC Electrical Characteristics

			T _A = +25°C			$\textbf{T}_{\textbf{A}}=-\textbf{55}^{\circ}\textbf{C} \text{ to }+\textbf{125}^{\circ}\textbf{C}$		$T_A = 0^{\circ}C$ to $+70^{\circ}C$	
Symbol	Parameter		V _{CC} = +5.0\	/	$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units
Symbol			C _L = 50 pF			$C_L = 50 \text{ pF}$		$C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	3.0	7.0	9.5	3.0	12.0	3.0	10.5	
t _{PHL}	Transparent Mode	3.0	5.0	6.5	2.5	8.5	3.0	7.5	ns
	\overline{A}_n to \overline{B}_n or \overline{B}_n to \overline{A}_n								
t _{PLH}	Propagation Delay	6.0	10.0	13.0	6.0	18.0	6.0	14.5	
t _{PHL}	LEBA to An	4.0	7.0	9.5	4.0	11.5	4.0	10.5	ns
t _{PLH}	Propagation Delay	6.0	10.0	13.0	6.0	18.0	6.0	14.5	
t _{PHL}	LEAB to B _n	4.0	7.0	9.5	4.0	11.5	4.0	10.5	ns
t _{PZH}	Output Enable Time	3.0	7.0	9.0	3.0	11.0	3.0	10.0	
t _{PZL}	\overline{OEBA} or \overline{OEAB} to \overline{A}_n or \overline{B}_n	4.0	7.5	10.5	4.0	13.0	4.0	12.0	
	$\overline{\text{CEBA}}$ or $\overline{\text{CEAB}}$ to $\overline{\text{A}}_{n}$ or $\overline{\text{B}}_{n}$								
t _{PHZ}	Output Disable Time	1.0	6.0	8.0	2.0	10.0	1.0	9.0	ns
t _{PLZ}	\overline{OEBA} or \overline{OEAB} to \overline{A}_n or \overline{B}_n	2.5	5.5	10.5	2.0	9.5	2.5	11.5	
	\overline{CEBA} or \overline{CEAB} to $\overline{A_p}$ or $\overline{B_p}$								

AC Operating Requirements

	_	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$			C to +125°C	$T_A = 0^{\circ}C$ to $+70^{\circ}C$		
Symbol	Parameter			$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.0		3.0		
t _S (L)	\overline{A}_n or \overline{B}_n to \overline{LEBA} or \overline{LEAB}	3.0		3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	3.0		3.0		3.0		115
t _H (L)	\overline{A}_n or \overline{B}_n to \overline{LEBA} or \overline{LEAB}	3.0		3.0		3.0		
t _W (L)	Latch Enable, B to A	6.0		9.0		7.5		ns
	Pulse Width, LOW	0.0		9.0		7.5		115

