Octal 3-State Non-Inverting D Flip-Flop

High-Performance Silicon-Gate CMOS

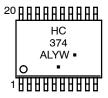
The 74HC374 is identical in pinout to the LS374. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

Data meeting the setup time is clocked to the outputs with the rising edge of the clock. The Output Enable input does not affect the states of the flip-flops, but when Output Enable is high, the outputs are forced to the high-impedance state; thus, data may be stored even when the outputs are not enabled.

The HC374 is identical in function to the HC574A which has the input pins on the opposite side of the package from the output. This device is similar in function to the HC534A which has inverting outputs.

Features

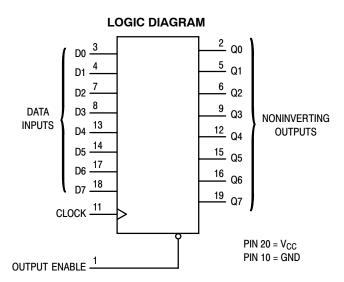
- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 266 FETs or 66.5 Equivalent Gates
- This is a Pb-Free Device


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

TSSOP-20 DT SUFFIX CASE 948E


HC374 = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

PIN ASSIGNMENT

OUTPUT C	1●	20	v _{cc}
Q0 [2	19	Q7
D0 [3	18	D7
D1 [4	17	D6
Q1 [5	16	Q6
Q2 [6	15	Q5
D2 [7	14	D5
D3 [8	13	D4
Q3 [9	12	Q4
GND [10	11	СГОСК

FUNCTION TABLE

	Inputs		Output
Output Enable	Clock	D	Q
L		Н	Н
L		L	L
L	L,H, ∕_	Χ	No Change
Н	X	Х	Z

X = don't care

Z = high impedance

ORDERING INFORMATION

Device	Package	Shipping [†]
74HC374DTR2G	TSSOP-20*	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	$-$ 0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±75	mA
P_{D}	Power Dissipation in Still Air, TSSOP Package†	450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Parameter			
V _{CC}	DC Supply Voltage (Referenced to GND)	Supply Voltage (Referenced to GND)			V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to Gi	Voltage, Output Voltage (Referenced to GND)		V _{CC}	V
T _A	Operating Temperature, All Package Types	mperature, All Package Types			°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2$ (Figure 1) $V_{CC} = 4$ $V_{CC} = 6$	1.5 V	0 0	1000 500 400	ns

[†]Derating — TSSOP Package: - 6.1 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} (V)	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	2.0	1.50	1.50	1.50	V
		I _{out} ≤ 20 μA	3.0	2.10	2.10	2.10	
		,	4.5	3.15	3.15	3.15	
			6.0	4.20	4.20	4.20	
V _{IL}	Maximum Low-Level Input Voltage	V _{out} = 0.1 V or V _{CC} - 0.1 V	2.0	0.50	0.50	0.50	V
		$ I_{out} \leq 20 \mu A$	3.0	0.90	0.90	0.90	
			4.5	1.35	1.35	1.35	
			6.0	1.80	1.80	1.80	
V _{OH}	Minimum High-Level Output	V _{in} = V _{IH} or V _{IL}	2.0	1.90	1.90	1.90	V
	Voltage	$ I_{out} \leq 20 \mu A$	4.5	4.40	4.40	4.40	
			6.0	5.90	5.90	5.90	
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \leq 2.4 \text{ mA}$	3.0	2.48	2.34	2.20	
		$ I_{\text{out}} \leq 6.0 \text{ mA}$	4.5	2.98	3.84	3.70	V
		$ I_{out} \le 7.8 \text{ mA}$	6.0	5.48	5.34	5.20	
V _{OL}	Maximum Low-Level Output	$V_{in} = V_{IH}$ or V_{IL}	2.0	0.10	0.10	0.10	V
	Voltage	$ I_{out} \leq 20 \mu\text{A}$	4.5	0.10	0.10	0.10	
			6.0	0.10	0.10	0.10	
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \leq 2.4 \text{ mA}$	3.0	0.26	0.33	0.40	
		$ I_{\text{out}} \leq 6.0 \text{ mA}$	4.5	0.26	0.33	0.40	V
		$ I_{out} \le 7.8 \text{ mA}$	6.0	0.26	0.33	0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
loz	Maximum Three-State	Output in High-Impedance State	6.0	±0.5	±5.0	±10	μΑ
	Leakage Current	$V_{in} = V_{IL}$ or V_{IH}					
		V _{out} = V _{CC} or GND					
Icc	Maximum Quiescent Supply	V _{in} = V _{CC} or GND	6.0	4.0	40	40	μΑ
	Current (per Package)	$I_{out} = 0 \mu A$					

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC} (V)	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)	2.0 3.0 4.5 6.0	6 15 30 35	5 10 24 28	4 8 20 24	MHz
t _{PLH} t _{PHL}	Maximum Propagation Delay, Input Clock to Q (Figures 1 and 5)	2.0 3.0 4.5 6.0	125 80 25 21	155 110 31 26	190 130 38 32	ns
t _{PLZ} t _{PHZ}	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
t _{PLZ} t _{PHZ}	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
t _{TLH} t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 5)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)		15	15	15	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Enabled Output)*	34	рF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \, V_{CC}^2 f + I_{CC} \, V_{CC}$. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$)

					G	uarant	eed Lim	it		
			V _{CC}	– 55 to	25°C	≤ 8	5°C	≤ 12	25°C	
Symbol	Parameter	Figure	(V)	Min	Max	Min	Max	Min	Max	Unit
t _{su}	Minimum Setup Time, Data to Clock	3	2.0 3.0 4.5 6.0	50 40 10 9		65 50 13 11		75 60 15 13		ns
t _h	Minimum Hold Time, Clock to Data	3	2.0 3.0 4.5 6.0	5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		ns
t _w	Minimum Pulse Width, Clock	1	2.0 3.0 4.5 6.0	60 23 12 10		75 27 15 13		90 32 18 15		ns
t _r , t _f	Maximum Input Rise and Fall Times	1	2.0 3.0 4.5 6.0		1000 800 500 400		1000 800 500 400		1000 800 500 400	ns

SWITCHING WAVEFORMS

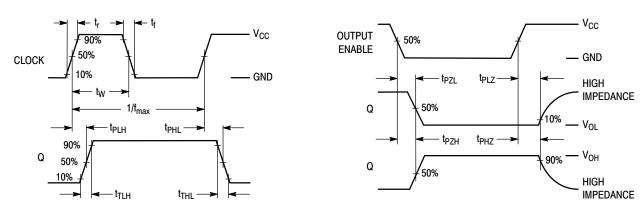


Figure 1. Figure 2.

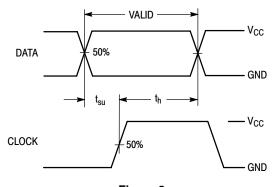
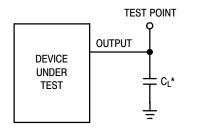
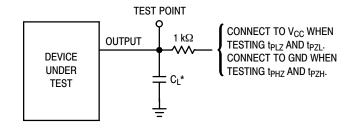




Figure 3.

TEST CIRCUITS

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 4.

Figure 5.

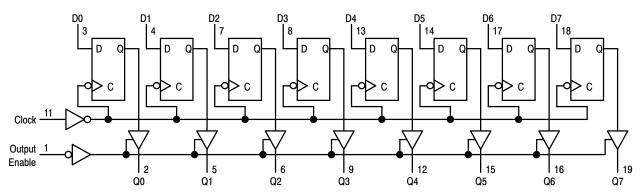
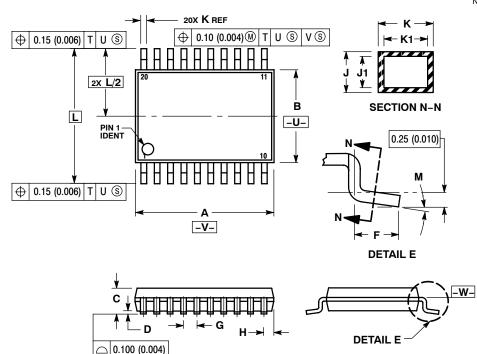



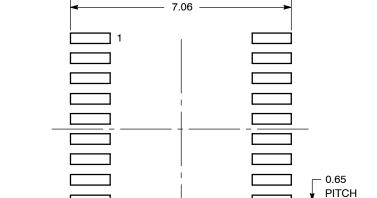
Figure 6. Expanded Logic Diagram

PACKAGE DIMENSIONS

TSSOP-20 CASE 948E-02 **ISSUE C**

-T- SEATING PLANE

16X


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

- MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19 0		0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252	BSC	
M	٥o	a٥	0 0	80	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

16X 1.26

ON Semiconductor and were registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative