INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4518Dual synchronous BCD counter

Product specification
File under Integrated Circuits, IC06

December 1990

Dual synchronous BCD counter

74HC/HCT4518

FEATURES

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4518 are high-speed Si-gate CMOS devices and are pin compatible with the "4518" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4518 are dual 4-bit internally synchronous BCD counters with an active HIGH clock input (nCP₀) and an active LOW clock input (n $\overline{CP_1}$), buffered outputs from

all four bit positions (nQ₀ to nQ₃) and an active HIGH overriding asynchronous master reset input (nMR).

The counter advances on either the LOW-to-HIGH transition of nCP_0 if nCP_1 is HIGH or the HIGH-to-LOW transition of nCP_1 if nCP_0 is LOW. Either nCP_0 or nCP_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on nMR resets the counter (nQ_0 to nQ_3 = LOW) independent of nCP_0 and nCP_1 .

APPLICATIONS

- Multistage synchronous counting
- · Multistage asynchronous counting
- · Frequency dividers

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay nCP ₀ , nCP ₁ to nQ _n	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	20	24	ns	
t _{PHL}	propagation delay nMR to nQ _n		13	14	ns	
f _{max}	maximum clock frequency	una distribution ser	61	55	MHz	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per counter	notes 1 and 2	29	27	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

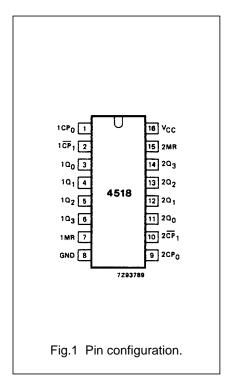
C_L = output load capacitance in pF

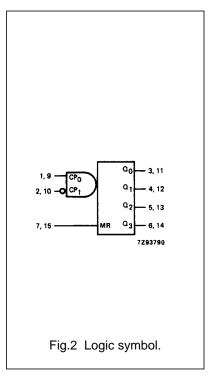
V_{CC} = supply voltage in V

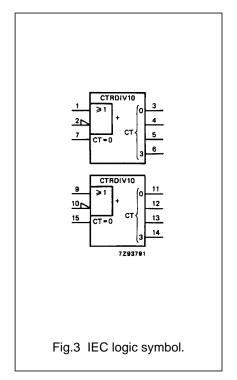
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

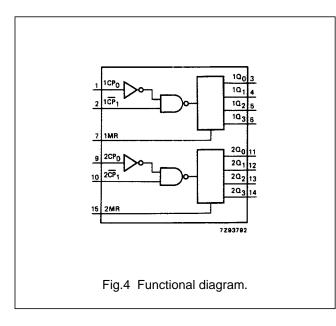

See "74HC/HCT/HCU/HCMOS Logic Package Information".


Dual synchronous BCD counter


74HC/HCT4518

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 9	1CP ₀ , 2CP ₀	clock inputs (LOW-to-HIGH, edge-triggered)
2, 10	1 CP ₁ , 2 CP ₁	clock inputs (HIGH-to-LOW, edge-triggered)
3, 4, 5, 6	1Q ₀ to 1Q ₃	data outputs
7, 15	1MR, 2MR	asynchronous master reset inputs (active HIGH)
8	GND	ground (0 V)
11, 12, 13, 14	2Q ₀ to 2Q ₃	data outputs
16	V _{CC}	positive supply voltage



Philips Semiconductors Product specification

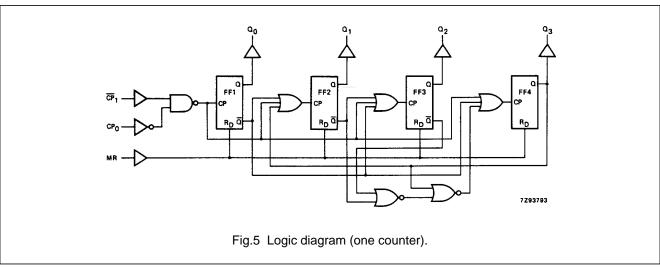
Dual synchronous BCD counter

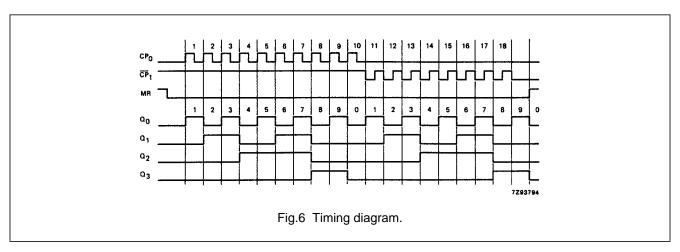
74HC/HCT4518

FUNCTION TABLE

nCP ₀ nCP ₁ MR		MR	MODE
\uparrow	Н	L	counter advances
L	\downarrow	L	counter advances
\downarrow	X	L	no change
X	↑	L	no change
↑	L	L	no change
Н	\downarrow	L	no change
X	X	Н	Q_0 to $Q_3 = LOW$

Notes


1. H = HIGH voltage level


L = LOW voltage level

X = don't care

↑ = LOW-to-HIGH clock transition

 \downarrow = HIGH-to-LOW clock transition

Philips Semiconductors Product specification

Dual synchronous BCD counter

74HC/HCT4518

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
OVMDOL		74HC									
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(*)	
t _{PHL} / t _{PLH}	propagation delay nCP ₀ , nCP ₁ to nQ _n		66 24 19	210 42 36		265 53 45		315 63 59	ns	2.0 4.5 6.0	Fig.9
t _{PHL}	propagation delay nMR to nQ _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.9
t _W	clock pulse width HIGH or LOW	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
t _W	master reset pulse width HIGH	120 24 20	39 14 11		150 30 26		180 36 31		ns	2.0 4.5 6.0	Fig.8
t _{rem}	removal time nMR to nCP ₀ , nCP ₁	0 0 0	-22 -8 -6		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time nCP ₁ to nCP ₀ ; nCP ₀ to nCP ₁	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency nCP ₀ , nCP ₁	6.0 30 35	18 55 66		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.8

Philips Semiconductors Product specification

Dual synchronous BCD counter

74HC/HCT4518

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

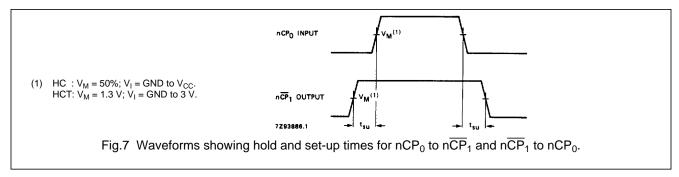
I_{CC} category: MSI

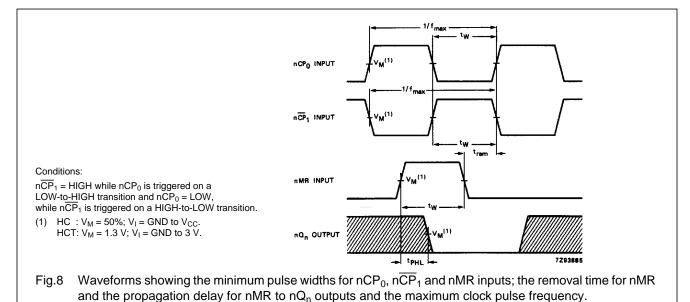
Note to HCT types

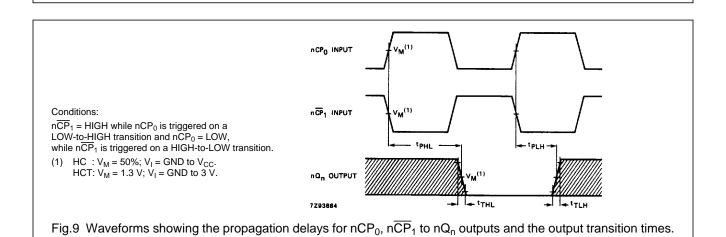
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
nCP_0 , $n\overline{CP}_1$	0.80						
nMR	1.50						

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay nCP ₀ , nCP ₁ to nQ _n		28	53		66		80	ns	4.5	Fig.9
t _{PHL}	propagation delay nMR to nQ _n		17	35		44		53	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.9
t _W	clock pulse width HIGH or LOW	20	11		25		30		ns	4.5	Fig.8
t _W	master reset pulse width HIGH	20	11		25		30		ns	4.5	Fig.8
t _{rem}	removal time nMR to nCP ₀ , nCP ₁	0	-11		0		0		ns	4.5	Fig.8
t _{su}	set-up time nCP ₁ to nCP ₀ ; nCP ₀ to nCP ₁	16	5		20		24		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency nCP ₀ , nCP ₁	25	50		20		17		MHz	4.5	Fig.8


Dual synchronous BCD counter

74HC/HCT4518

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".