Octal 3-State Noninverting D Flip-Flop

High-Performance Silicon-Gate CMOS

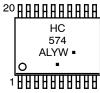
The 74HC574 is identical in pinout to the LS574. The device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs.

Data meeting the set-up time is clocked to the outputs with the rising edge of the Clock. The Output Enable input does not affect the states of the flip-flops but when Output Enable is high, all device outputs are forced to the high-impedance state. Thus, data may be stored even when the outputs are not enabled.

The HC574 is identical in function to the HC374A but has the flip-flop inputs on the opposite side of the package from the outputs to facilitate PC board layout.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- ESD Performance: HBM > 2000 V: Machine Model > 200 V
- Chip Complexity: 266 FETs or 66.5 Equivalent Gates
- This is a Pb-Free Device

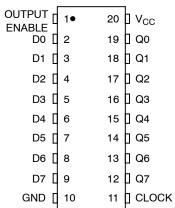

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

TSSOP-20 DT SUFFIX CASE 948E

HC574 = Device Code


A = Assembly Location

L = Wafer Lot Y = Year W = Work Week • Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Н X = Don't Care

Z = High Impedance

OE

L

L

L

FUNCTION TABLE

D

Н

L

Χ

Output

Q

Н

No Change Ζ

Inputs

Clock

L,H, ╲

Х

Figure 1. Pin Assignment

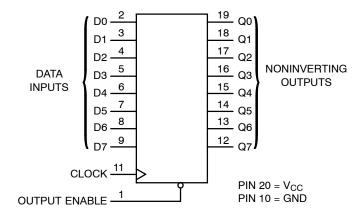


Figure 2. Logic Diagram

Design Criteria	Value	Units
Internal Gate Count*	66.5	ea.
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	0.0075	рЈ

^{*}Equivalent to a two-input NAND gate.

MAXIMUM RATINGS

Symbol	1	Parameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		-0.5 to $V_{CC} + 0.5$	V
Vo	DC Output Voltage	(Note 1)	-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±35	mA
IO	DC Output Sink Current		±35	mA
I _{CC}	DC Supply Current per Supply Pin		±75	mA
I _{GND}	DC Ground Current per Ground Pin		±75	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case	for 10 Seconds	260	°C
TJ	Junction Temperature under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance	TSSOP	128	°C/W
P_{D}	Power Dissipation in Still Air at 85°C	TSSOP	450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3)	>2000 >200	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 4)	±300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_O absolute maximum rating must be observed.

- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to EIA/JESD78.
- 5. For high frequency or heavy load considerations, see the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _I , V _O	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 3)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

^{6.} Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

ORDERING INFORMATION

Device	Package	Shipping [†]
74HC574DTR2G	TSSOP-20*	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}This package is inherently Pb-Free.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			V _{CC}	Guara	nteed Lim	it	
Symbol	Parameter Test Conditions		(V)	-55 to 25°C	≤ 85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{aligned} V_{out} &= V_{CC} - 0.1 \text{ V} \\ I_{out} &\leq 20 \mu\text{A} \end{aligned}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
V _{OH}	Minimum High-Level Output Voltage	$ \begin{array}{c c} V_{in} = V_{IH} & & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \\ \end{array} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	V
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} V_{in} = V_{IL} & & I_{out} \leq 2.4 \text{ mA} \\ & I_{out} \leq 6.0 \text{ mA} \\ & I_{out} \leq 7.8 \text{ mA} \end{aligned} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	±1.0	± 1.0	μΑ
I _{OZ}	Maximum Three-State Leakage Current	Output in High–Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	6.0	± 0.5	±5.0	±10	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 μA	6.0	4.0	40	40	μΑ

^{7.} Information on typical parametric values can be found in the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF; Input t_r = t_f = 6.0 ns)

		V _{CC}	Guaranteed Limit			
Symbol	Parameter	(V)	-55 to 25°C	≤ 85°C	≤125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 3 and 6)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	160 105 32 27	200 145 40 34	240 190 48 41	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q (Figures 4 and 7)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q (Figures 4 and 7)	2.0 3.0 4.5 6.0	140 90 28 24	175 120 35 30	210 140 42 36	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, any Output (Figures 3 and 6)	2.0 3.0 4.5 6.0	60 27 12 10	75 32 15 13	90 36 18 15	ns
C _{in}	Maximum Input Capacitance	10	10	10	pF	
C _{out}	Maximum Three-State Output Capacitance, Output in High-State	15	15	15	pF	

^{8.} For propagation delays with loads other than 50 pF, and information on typical parametric values, see the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Enabled Output)*	24	pF

^{*}Used to determine the no-load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS ($C_L = 50 \text{ pF}$; Input $t_r = t_f = 6.0 \text{ ns}$)

				Guaranteed Limit						
			V _{CC}	– 55 to	25°C	≤ 8	5°C	≤ 12	25°C	
Symbol	Parameter	Figure	(V)	Min	Max	Min	Max	Min	Max	Unit
t _{su}	Minimum Setup Time, Data to Clock	5	2.0 3.0 4.6 6.0	50 40 10 9.0		65 50 13 11		75 60 15 13		ns
t _h	Minimum Hold Time, Clock to Data	5	2.0 3.0 4.5 6.0	5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		ns
t _w	Minimum Pulse Width, Clock	3	2.0 3.0 4.5 6.0	75 60 15 13		95 80 19 16		110 90 22 19		ns
t _r , t _f	Maximum Input Rise and Fall Times	3	2.0 3.0 4.5 6.0		1000 800 500 400		1000 800 500 400		1000 800 500 400	ns

SWITCHING WAVEFORMS

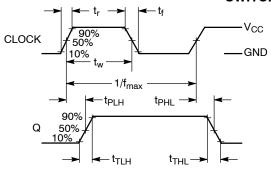


Figure 3.

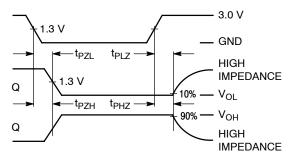


Figure 4.

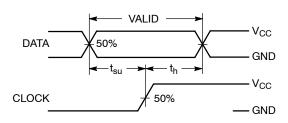
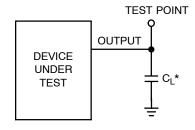
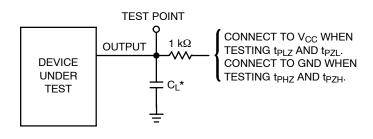




Figure 5.

*Includes all probe and jig capacitance.

Figure 6.

*Includes all probe and jig capacitance.

Figure 7. Test Circuit

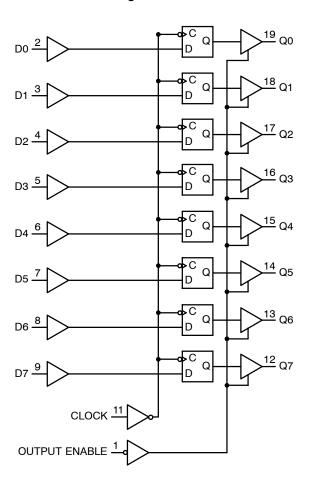
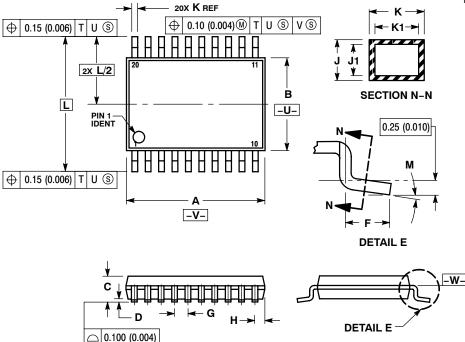



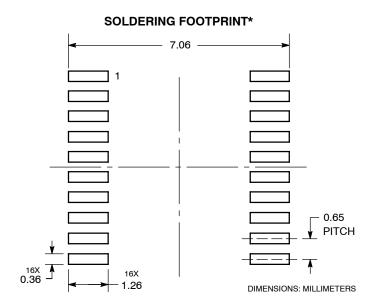
Figure 8. Expanded Logic Diagram

PACKAGE DIMENSIONS

TSSOP-20 CASE 948E-02 **ISSUE C**

-T- SEATING PLANE

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.

- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
٦	6.40	BSC	0.252 BSC		
M	0°	8°	0°	8°	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and were registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative