Nine wide Schmitt trigger buffer; open drain outputs; inverting

Rev. 3 — 2 October 2017

Product data sheet

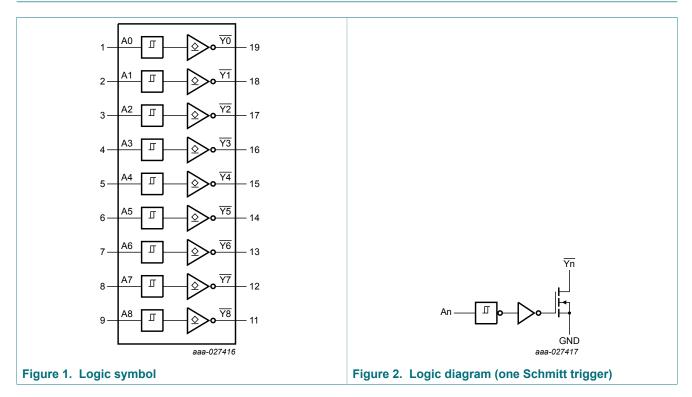
1 **General description**

The 74HC9114; 74HCT9114 is a 9-bit inverter with Schmitt trigger inputs and open drain outputs. Inputs also include clamp diodes, this enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}. Schmitt trigger inputs transform slowly changing input signals into sharply defined jitter-free output signals.

2 **Features and benefits**

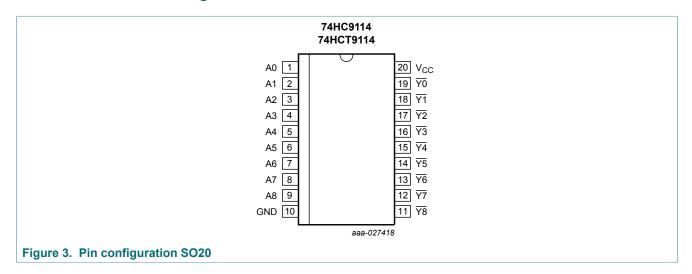
- Wide operating voltage 2.0 V to 6.0 V
- Schmitt trigger action on all data inputs
- Low-power dissipation
- Complies with JEDEC standard no. 7A
- · ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3 **Ordering information**


Table 1. Ordering information

Type number	Package	Package							
	Temperature range	Name	Description	Version					
74HC9114D	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1					
74HCT9114D			body width 7.5 mm						

nexperia


Nine wide Schmitt trigger buffer; open drain outputs; inverting

4 Functional diagram

5 Pinning information

5.1 Pinning

2/13

Nine wide Schmitt trigger buffer; open drain outputs; inverting

5.2 Pin description

Table 2. Pin description		
Symbol	Pin	Description
A0, A1, A2, A3, A4, A5, A6, A7, A8	1, 2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
<u>Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8</u>	19, 18, 17, 16, 15, 14, 13, 12, 11	data output
V _{CC}	20	supply voltage

6 Functional description

Table 3. Function table ^[1]

Input	Output
An	Yn
L	Z
Н	L

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7 Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	[1]	-	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	[1]	-	±20	mA
I _O	output current	$-0.5 V < V_O < V_{CC} + 0.5 V$	[1]	-	±25	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[2]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] Above 70 °C the value of Ptot derates linearly with 8 mW/K.

Nine wide Schmitt trigger buffer; open drain outputs; inverting

8 Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74HC9114			74	Unit		
			Min	Тур	Мах	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

9 Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{ar}	_{nb} = 25	°C	T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Мах	Min	Max	
74HC911	4									
V _{OH}	HIGH-level	$V_{I} = V_{T+} \text{ or } V_{T-}$								
	output voltage	I_{O} = -20 µA; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I_{O} = -20 µA; V_{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = -20 µA; V_{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
	I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V	
	I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V	
V _{OL}	LOW-level	$V_{I} = V_{T+} \text{ or } V_{T-}$								
	output voltage	I_{O} = 20 µA; V_{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 20 µA; V_{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 20 µA; V_{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0$ V	-	-	8.0	-	80	-	160	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

74HC9114; 74HCT9114

Nine wide Schmitt trigger buffer; open drain outputs; inverting

Symbol	Parameter	Conditions	T _{ar}	T _{amb} = 25 °C			T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C	
			Min	Тур	Мах	Min	Max	Min	Мах	
74HCT91	14				1		1			
V _{OH}	HIGH-level	V_{I} = V_{T+} or V_{T-} ; V_{CC} = 4.5 V								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	V_{I} = V_{T+} or V_{T-} ; V_{CC} = 4.5 V								
	output voltage	I _O = 20 μA;	-	0	0.1	-	0.1	-	0.1	V
		l _O = 4.0 mA;	-	0.15	0.26	-	0.33	-	0.4	V
I _I	input leakage current	V_{I} = V_{CC} or GND; V_{CC} = 5.5 V	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	-	80	-	160	μA
ΔI _{CC}	additional supply current	per An input pin; $I_0 = 0 A$; $V_{CC} = 4.5 V$ to 5.5 V; $V_I = V_{CC} - 2.1 V$; other inputs at V_{CC} or GND	-	30	108	-	135	-	147	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

10 Dynamic characteristics

Table 7. Dynamic characteristics

 $GND = 0 V; C_L = 50 pF;$ for test circuit see Figure 5.

Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	T _{amb} = -40 °	C to +125 °C	Unit
			Min	Тур	Max	Мах (85 °С)	Max (125 °C)	
74HC911	4	1	1	1	1		1	
t _{pd}	propagation delay	An to \overline{Yn} ; see <u>Figure 4</u> [1]						
	V _{CC} = 2.0 V	-	36	110	140	165	ns	
	V _{CC} = 4.5 V	-	13	22	28	33	ns	
		V _{CC} = 5.0 V; C _L = 15 pF	-	12	-	-	-	ns
		V _{CC} = 6.0 V	-	10	19	24	28	ns
t _{THL}	HIGH to LOW	Yn; see <u>Figure 4</u>						
	output transition time	V _{CC} = 2.0 V	-	19	75	95	110	ns
		V _{CC} = 4.5 V	-	7	15	19	22	ns
		V _{CC} = 6.0 V	-	6	13	16	19	ns
C _{PD}	power dissipation capacitance	per buffer; V_1 = GND to V_{CC} ^[2]	-	5	-	-	-	pF

74HC9114; 74HCT9114

Nine wide Schmitt trigger buffer; open drain outputs; inverting

Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	T _{amb} = -40 °	C to +125 °C	Unit
			Min	Тур	Max	Мах (85 °С)	Max (125 °C)	
74HCT91	14	·					-	
t _{pd} propagation delay	An to \overline{Yn} ; see Figure 4 [1							
		V _{CC} = 4.5 V	-	17	31	39	47	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	13	-	-	-	ns
t _{THL}	HIGH to LOW output transition time	Yn; V _{CC} = 4.5 V; see Figure 4	-	7	15	19	22	ns
C _{PD}	power dissipation capacitance	per buffer; [2 V _I = GND to V _{CC} - 1.5 V	-	5	-	-	-	pF

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_{L} = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

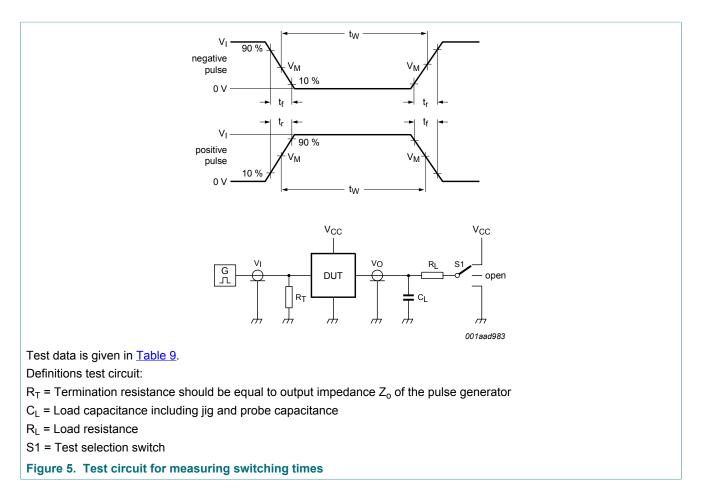
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

10.1 Waveforms and test circuit

Measurement points are given in Table 8.

V_{OL} is a typical voltage output level that occurs with the output load.

Figure 4. Input to output propagation delays and HIGH to LOW output transition time


Table 8. Measurement points

Туре	Input	Output					
	V _M	V _M	V _X				
74HC9114	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}				
74HCT9114	1.3 V	1.3 V	0.1V _{CC}				

74HC_HCT9114 **Product data sheet**

74HC9114; 74HCT9114

Nine wide Schmitt trigger buffer; open drain outputs; inverting

Table 9. Test data

Туре	Input		Load		S1 position	
	VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	t _{PZL} , t _{PLZ}
74HC9114	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	V _{CC}
74HCT9114	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	V _{CC}

Nine wide Schmitt trigger buffer; open drain outputs; inverting

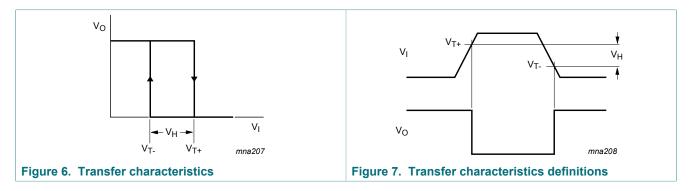
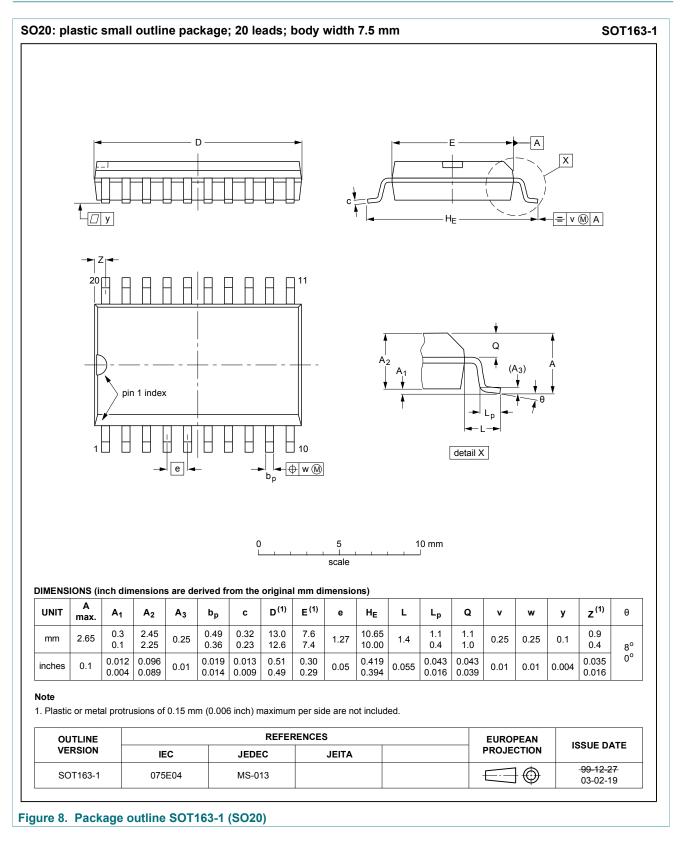

10.2 Transfer characteristics

Table 10. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see Figure 6 and Figure 7.


Parameter	Conditions	T _{ar}	T _{amb} = 25 °C		T _{amb} = −40 °C to +85 °C		T _{amb} = −40 °C to +125 °C		Unit
		Min	Тур	Max	Min	Мах	Min	Max	
4			1				1		
positive-going	V_{CC} = 2.0 V	0.70	1.13	1.50	0.70	1.50	0.70	1.50	V
threshold voltage	V _{CC} = 4.5 V	1.75	2.37	3.15	1.75	3.15	1.75	3.15	V
	V _{CC} = 6.0 V	2.30	3.11	4.20	2.30	4.20	2.30	4.20	V
negative-going	V _{CC} = 2.0 V	0.30	0.70	1.10	0.30	1.10	0.30	1.10	V
threshold voltage	V _{CC} = 4.5 V	1.35	1.80	2.40	1.35	2.40	1.35	2.40	V
	V _{CC} = 6.0 V	1.8	2.43	3.30	1.80	3.30	1.80	3.30	V
hysteresis voltage	V _{CC} = 2.0 V	0.2	0.43	0.80	0.18	0.80	0.15	0.80	V
	$V_{\rm CC}$ = 4.5 V	0.4	0.57	1.00	0.40	1.00	0.40	1.00	V
	V_{CC} = 6.0 V	0.5	0.68	1.10	0.50	1.10	0.50	1.10	V
114							1		
positive-going	V _{CC} = 4.5 V	0.9	1.50	2.0	0.9	2.0	0.9	2.0	V
threshold voltage	V _{CC} = 5.5 V	1.2	1.70	2.1	1.2	2.1	1.2	2.1	V
negative-going	V _{CC} = 4.5 V	0.7	1.06	1.4	0.7	1.4	0.7	1.4	V
threshold voltage	V _{CC} = 5.5 V	0.8	1.27	1.7	0.8	1.7	0.8	2.7	V
hysteresis voltage	V _{CC} = 4.5 V	0.2	0.44	0.8	0.2	0.8	0.2	0.8	V
	V _{CC} = 5.5 V	0.2	0.44	0.8	0.2	0.8	0.2	0.8	V
	Id positive-going threshold voltage negative-going threshold voltage hysteresis voltage Id positive-going threshold voltage negative-going threshold voltage negative-going threshold voltage negative-going threshold voltage	I4positive-going threshold voltage $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ negative-going threshold voltage $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ hysteresis voltage $V_{CC} = 2.0 \text{ V}$ 	$\begin{tabular}{ c $	$\begin{tabular}{ c $	$\begin{tabular}{ c c c } \hline \begin{tabular}{ c c } \hline \be$	$\begin{tabular}{ c c c c c } \hline to + 1 \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline Min & Typ & Max & Min \\ \hline V_{CC} = 2.0 V & 0.70 & 1.13 & 1.50 & 0.70 \\ \hline V_{CC} = 4.5 V & 1.75 & 2.37 & 3.15 & 1.75 \\ \hline V_{CC} = 4.5 V & 1.35 & 1.80 & 2.40 & 1.35 \\ \hline V_{CC} = 4.5 V & 0.4 & 0.57 & 1.00 & 0.40 \\ \hline V_{CC} = 4.5 V & 0.4 & 0.57 & 1.00 & 0.40 \\ \hline V_{CC} = 6.0 V & 0.5 & 0.68 & 1.10 & 0.50 \\ \hline \ 114 \\ \hline \ positive-going \\ threshold voltage & V_{CC} = 4.5 V & 0.9 & 1.50 & 2.0 & 0.9 \\ \hline V_{CC} = 5.5 V & 1.2 & 1.70 & 2.1 & 1.2 \\ negative-going \\ threshold voltage & V_{CC} = 4.5 V & 0.7 & 1.06 & 1.4 & 0.7 \\ \hline V_{CC} = 5.5 V & 0.8 & 1.27 & 1.7 & 0.8 \\ hysteresis voltage & V_{CC} = 4.5 V & 0.2 & 0.44 & 0.8 & 0.2 \\ \hline \ \ \end{tabular}$	$\begin{tabular}{ c c c c } \hline Implement \begin{tabular}{ c c c c c } \hline Implement \begin{tabular}{ c c c c } \hline Implement \begin{tabular}{ c c c c c } \hline Implement \begin{tabular}{ c c c c c c } \hline Implement \begin{tabular}{ c c c c c c c c } \hline Implement \begin{tabular}{ c c c c c c c } \hline Implement \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{1}{10000000000000000000000000000000000$	$ \begin{array}{ $

10.3 Transfer characteristics waveforms

Nine wide Schmitt trigger buffer; open drain outputs; inverting

11 Package outline

74HC_HCT9114 Product data sheet

Nine wide Schmitt trigger buffer; open drain outputs; inverting

12 Abbreviations

Table 11. Abbreviations				
Acronym	Description			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
НВМ	Human Body Model			
ММ	Machine Model			

13 Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74HC_HCT9114 v.3	20171002	Product data sheet	-	74HC_HCT9114 v.2		
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 					
74HC_HCT9114 v.2	19901201	Product specification	-	74HC_HCT9114 v.1		
74HC_HCT9114 v.1	19880301	Product specification	-	-		

Nine wide Schmitt trigger buffer; open drain outputs; inverting

14 Legal information

14.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

The term 'short data sheet' is explained in section "Definitions".

[2] [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Nine wide Schmitt trigger buffer; open drain outputs; inverting

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74HC9114; 74HCT9114

Nine wide Schmitt trigger buffer; open drain outputs; inverting

Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	1
4	Functional diagram	2
5	Pinning information	
5.1	Pinning	2
5.2	Pin description	
6	Functional description	
7	Limiting values	3
8	Recommended operating conditions	4
9	Static characteristics	
10	Dynamic characteristics	5
10.1	Waveforms and test circuit	
10.2	Transfer characteristics	8
10.3	Transfer characteristics waveforms	8
11	Package outline	9
12	Abbreviations	
13	Revision history	
14	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Nexperia B.V. 2017.

All rights reserved.

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com

Date of release: 2 October 2017 Document identifier: 74HC_HCT9114