INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4515

4-to-16 line decoder/demultiplexer with input latches; inverting

Product specification
File under Integrated Circuits, IC06

September 1993

4-to-16 line decoder/demultiplexer with input latches; inverting

74HC/HCT4515

FEATURES

· Inverting outputs

Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4515 are high-speed Si-gate CMOS devices and are pin compatible with "4515" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4515 are 4-to-16 line decoders/demultiplexers having four binary weighted address inputs (A $_0$ to A $_3$) with latches, a latch enable input (LE), and an active LOW enable input (\overline{E}). The 16 inverting outputs (\overline{Q}_0 to \overline{Q}_{15}) are mutually exclusive active LOW. When LE is HIGH, the selected output is determined by the data on A $_n$. When LE goes LOW, the last data present at A $_n$ are stored in the latches and the outputs remain stable. When \overline{E} is LOW, the selected output, determined by the contents of the latch, is LOW. When \overline{E} is HIGH, all outputs are HIGH. The enable input (\overline{E}) does not affect the state of the latch.

When the "4515" is used as a demultiplexer, \overline{E} is the data input and A_0 to A_3 are the address inputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIDOL	PARAMETER	CONDITIONS	нс	нст	ONIT
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Q}_n	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	25	26	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	44	46	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

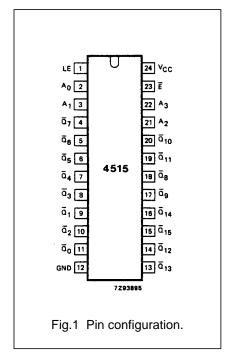
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

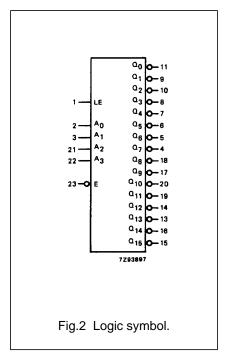
C_L = output load capacitance in pF

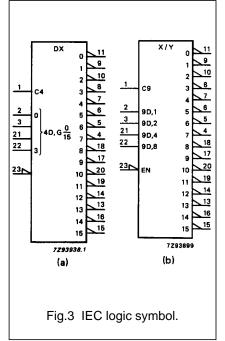
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

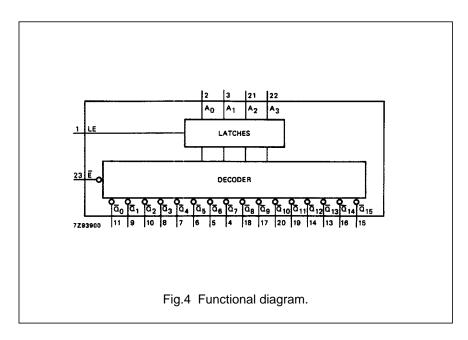

See "74HC/HCT/HCU/HCMOS Logic Package Information".


4-to-16 line decoder/demultiplexer with input latches; inverting


74HC/HCT4515

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	LE	latch enable input (active HIGH)
2, 3, 21, 22	A ₀ to A ₃	address inputs
11, 9, 10, 8, 7, 6, 5, 4,18, 17, 20, 19, 14, 13, 16, 15	\overline{Q}_0 to \overline{Q}_{15}	multiplexer outputs (active LOW)
12	GND	ground (0 V)
23	Ē	enable input (active LOW)
24	V _{CC}	positive supply voltage



4-to-16 line decoder/demultiplexer with input latches; inverting

74HC/HCT4515

APPLICATIONS

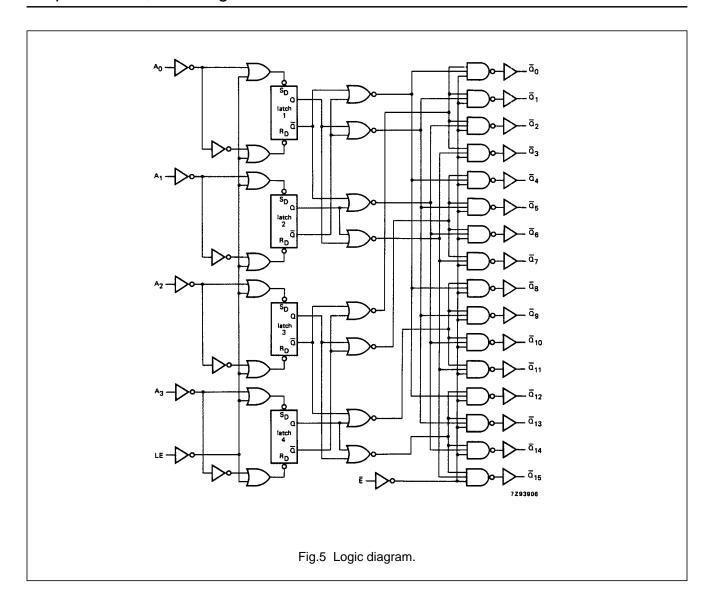
- · Digital multiplexing
- · Address decoding
- Hexadecimal/BCD decoding

FUNCTION TABLE

INPUTS					OUTPUTS															
Ē	A ₀	A ₁	A ₂	A ₃	\overline{Q}_0	\overline{Q}_1	\overline{Q}_2	\overline{Q}_3	\overline{Q}_{4}	\overline{Q}_{5}	\overline{Q}_6	\overline{Q}_7	\overline{Q}_{8}	\overline{Q}_9	\overline{Q}_{10}	\overline{Q}_{11}	\overline{Q}_{12}	\overline{Q}_{13}	\overline{Q}_{14}	\overline{Q}_{15}
Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	Н	L	L	Н	Н	Н	L	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	H	Н
L	L	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Notes

1. LE = HIGH


H = HIGH voltage level

L = LOW voltage level

X = don't care

4-to-16 line decoder/demultiplexer with input latches; inverting

74HC/HCT4515

4-to-16 line decoder/demultiplexer with input latches; inverting

74HC/HCT4515

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	DADAMETED			-	Γ _{amb} (°		TEST CONDITIONS				
					74HC			WAVEFORMS			
	PARAMETER		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Q}_n		80 29 23	250 50 43		315 63 54		375 75 64	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to $\overline{\mathbb{Q}}_n$		66 24 19	225 45 38		280 56 48		340 68 58	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay E to Q _n		50 18 14	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	latch enable pulse width HIGH	75 15 13	14 5 4		95 19 16		110 22 19		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time A _n to LE	90 18 15	28 10 8		115 23 20		135 27 23		ns	2.0 4.5 6.0	Fig.7
t _h	hold time A _n to LE	0 0 0	-11 -4 -3		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.7

4-to-16 line decoder/demultiplexer with input latches; inverting

74HC/HCT4515

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.

To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	0.65
LE	1.40
Ē	1.00

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	DADAMETED			•		TEST CONDITIONS					
					74HC			WAVEFORMS			
	PARAMETER		+25		-40 to+85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Q}_n		30	55		69		83	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		29	50		63		75	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay E to Q _n		18	40		50		60	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	latch enable pulse width HIGH	16	3		20		24		ns	4.5	Fig.7
t _{su}	set-up time A _n to LE	18	9		23		27		ns	4.5	Fig.7
t _h	hold time A _n to LE	3	-2		3		3		ns	4.5	Fig.7

4-to-16 line decoder/demultiplexer with input latches; inverting

74HC/HCT4515

AC WAVEFORMS

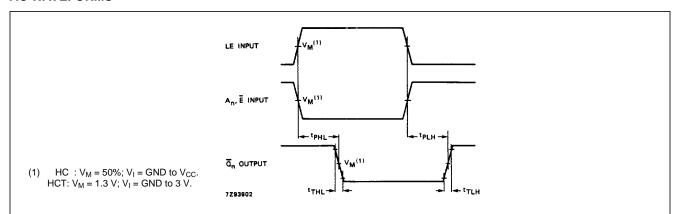


Fig.6 Waveforms showing the input (A_n, LE, \overline{E}) to output (\overline{Q}_n) propagation delays and the output transition times.

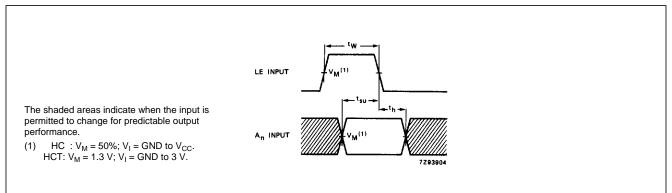


Fig.7 Waveforms showing the minimum pulse width of the latch enable input (LE) and the set-up and hold times for LE to A_n. Set-up and hold times are shown as positive values but may be specified as negative values.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.