DM54L74 Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear, and Complementary Outputs ## **General Description** This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs. ## **Connection Diagram** Order Number DM54L74J or DM54L74W See NS Package Number J14A or W14B TL/F/6631-1 #### **Function Table** | Inputs | | | Outputs | | | |--------|-----|-----|---------|----|------------------| | PR | CLR | CLK | D | Q | Q | | L | Н | х | × | Н | L | | н | L | х | × | L | Н | | L | L | Х | X | H* | H* | | Н | н | ↑ | H | н | L | | н | н | 1 ↑ | L | L | Н | | н | Н | L | × | QO | \overline{Q}_O | - H = High Logic Level - X = Either Low or High Logic Level - L = Low Logic Level - 1 = Positive-going transition. - $\mathbf{Q}_{O}=$ The output logic level of \mathbf{Q} before the indicated input conditions were established. - This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs returned to their inactive (high) level. # Absolute Maximum Ratings (Note) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 8V Input Voltage 5.5V Operating Free Air Temperature Range DM54L -55°C to +125°C Storage Temperature Range -65°C to +150°C Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. ## **Recommended Operating Conditions** | Symbol | Parameter | | DM54L74 | | | Units | |------------------|--------------------------------|------------|---------|-----|------|-------| | | | | Min | Nom | Max | Units | | V _{CC} | Supply Voltage | | 4.5 | 5 | 5.5 | V | | V _{IH} | High Level Input Voltage | | 2 | | | v | | V _{IL} | Low Level Input Voltage | | | | 0.7 | V | | Юн | High Level Output Current | t | | | -0.2 | mA | | loL | Low Level Output Current | - | | | 2 | mA | | f _{CLK} | Clock Frequency (Note 2) | | 0 | | 6 | MHz | | t₩ | Pulse Width (Note 2) | Clock High | 75 | | | | | | | Clock Low | 75 | | | | | | | Preset Low | 75 | | | ns | | | | Clear Low | 75 | | | | | tsu | Input Setup Time (Notes 1 & 2) | | 50 ↑ | | | ns | | tн | Input Hold Time (Notes 1 & 2) | | 15↑ | | | ns | | TA | Free Air Operating Tempe | rature | 55 | | 125 | °C | Note 1: The symbol (↑) indicates the rising edge of the clock pulse is used for reference. Note 2: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$. | Flectrical Characteristics | over recommended operating free air temperature (unless otherwise noted) | |----------------------------|--| | EIEGHUAI GHA AGUS IAUG | Over recommended oberating tree air temberature tubiess otherwise noted. | | Symbol | Parameter | Conditions | | Min | Typ
(Note 1) | Max | Unite | |--|---|---|--------|-----|-----------------|-------|------------| | V _{OH} | High Level Output
Voltage | V _{CC} = Min, I _{OH} = Max
V _{IL} = Max, V _{IH} = Min | | 2.4 | 3.3 | | ٧ | | VOL | Low Level Output
Voltage | V_{CC} = Min, I_{OL} = Max
V_{IL} = Max, V_{IH} = Min | | | 0.15 | 0.3 | ٧ | | l _l | Input Current @ Max | $\begin{array}{c} \text{Max} & \text{V}_{\text{CC}} = \text{Max} \\ \text{V}_{\text{I}} = 5.5 \text{V} \end{array}$ | D | | | 100 | - μΑ | | | Input Voltage | | Clear | | | 300 | | | | | | Preset | | | 200 | | | | | | Clock | | | 200 | | | I _{IH} High Leve | High Level Input | V _{CC} = Max | D | | | 10 | μΑ | | | Current | V _I = 2.4V | Clear | | | 30 | | | | | | Preset | | | 20 | | | | | | Clock | | | 20 | | | I _{IL} Low Level Inp
Current | Low Level Input $V_{CC} = Max$ $V_{I} = 0.3V$ | V _{CC} = Max | D | | | -0.18 | m A | | | | rrent V ₁ = 0.3V | Clear | | | -0.36 | | | | | | Preset | | | -0.18 | | | | | | Clock | | | -0.36 | | | los | Short Circuit
Output Current | V _{CC} = Max | | -3 | | -15 | mA | | Icc | Supply Current | V _{CC} = Max (N | ote 2) | | 1.6 | 3 | mA | Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C. Note 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded. # **Switching Characteristics** at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load) | Symbol | Parameter | From (Input)
To (Output) | $\mathbf{R_L} = 4 \mathbf{k} \Omega$ | | | |------------------|--|-----------------------------|---------------------------------------|-----|-------| | | | | Min | Max | Unite | | f _{MAX} | Maximum Clock Frequency | | 6 | _ | MHz | | t _{PLH} | Propagation Delay Time
Low to High Level Output | Preset
to Q | | 60 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | Preset
to Q | | 120 | ns | | ^t PLH | Propagation Delay Time
Low to High Level Output | Clear
to Q | | 60 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | Clear
to Q | | 120 | ns | | t _{PLH} | Propagation Delay Time
Low to High Level Output | Clock to
Q or Q | 10 | 90 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | Clock to
Q or Q | 10 | 120 | ns |