

June 1993 Revised April 2005

74LVX273

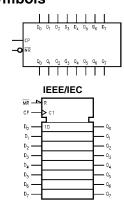
Low Voltage Octal D-Type Flip-Flop

General Description

The LVX273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset $(\overline{\text{MR}})$ input load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements. The inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.

Features


- Input voltage translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

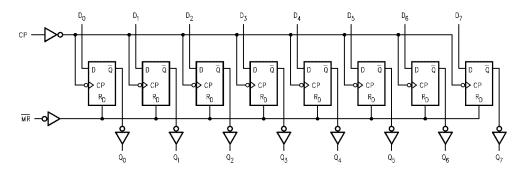
Ordering Code:

Order Number	Package Number	Package Description
74LVX273M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVX273SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending letter suffix "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Logic Symbols

Connection Diagram


Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
$\frac{D_0-D_7}{MR}$	Master Reset
CP	Clock Pulse Input
Q ₀ –Q ₇	Data Outputs

Truth Table

Operating Mode		Outputs		
	MR	СР	D_n	Qn
Reset (Clear)	L	Х	Х	L
Load '1'	Н	~	Н	Н
Load '0'	Н	~	L	L

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{lll} \mbox{V}_{\mbox{\scriptsize I}} = -0.5 \mbox{\scriptsize V} & -20 \mbox{ mA} \\ \mbox{\scriptsize DC Input Voltage (V}_{\mbox{\scriptsize I}}) & -0.5 \mbox{\scriptsize V} \mbox{\scriptsize to 7V} \end{array}$

DC Output Diode Current (I_{OK})

$$\begin{split} \text{V}_{\text{O}} &= -0.5 \text{V} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} \end{split}$$

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) $\pm 25 \text{ mA}$

DC V_{CC} or Ground Current

 $\begin{array}{ll} (I_{CC} \ or \ I_{GND}) & \pm 75 \ mA \\ \\ \mbox{Storage Temperature} \ (T_{STG}) & -65 \ ^{\circ}\mbox{C} \ to +150 \ ^{\circ}\mbox{C} \end{array}$

Power Dissipation 180 mW

Recommended Operating Conditions (Note 2)

Operating Temperature (T_A) $-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$ Input Rise and Fall Time ($\Delta t/\Delta V$) 0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.

The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cyllibol		• 66	Min	Тур	Max	Min	Max	Onics	Conditions		
V _{IH}	HIGH Level	2.0	1.5			1.5					
	Input Voltage	3.0	2.0			2.0		V			
		3.6	2.4			2.4					
V _{IL}	LOW Level	2.0			0.5		0.5				
	Input Voltage	3.0			0.8		0.8	V			
		3.6			0.8		0.8				
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$ $I_{OH} = -50 \mu\text{A}$ $I_{OH} = -4 \text{ mA}$		
	Output Voltage	3.0	2.9	3.0		2.9		V	I _{OH} = -50 μA		
		3.0	2.58			2.48			I _{OH} = -4 mA		
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL} I_{OL} = 50 \mu\text{A}$		
	Output Voltage	3.0		0.0	0.1		0.1	V	$I_{OL} = 50 \mu A$		
		3.0			0.36		0.44		$I_{OL} = 4 \text{ mA}$		
I _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μА	$V_{IN} = V_{IH}$ or V_{IL}		
	Off-State Current								V _{OUT} = V _{CC} or GND		
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μА	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μА	V _{IN} = V _{CC} or GND		

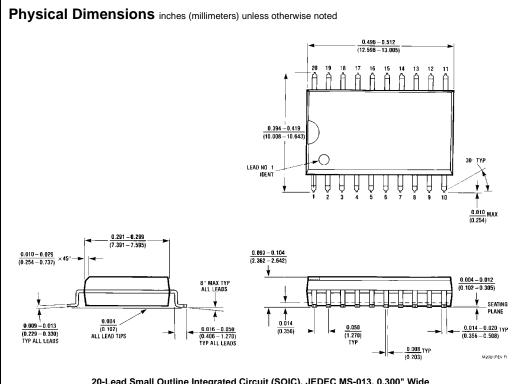
Noise Characteristics (Note 3)

Symbol	Parameter	V _{CC}	T _A = 25°C		Units	C _L (pF)	
			Тур	Limit	•		
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	50	
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

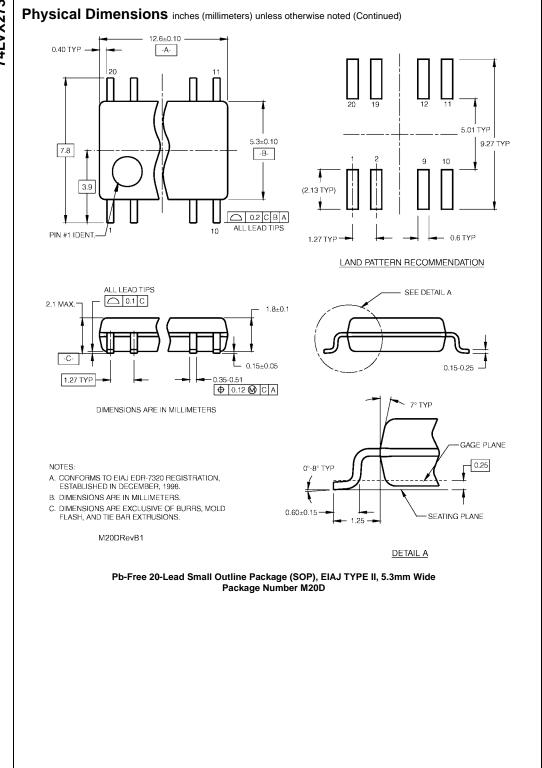
Note 3: Input $t_r = t_f = 3ns$

AC Electrical Characteristics

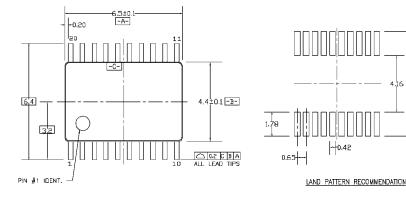
Symbol	Parameter	V _{CC}	T _A = +25°C			T _A = -40°	C to +85°C	Units	C _L (pF)
Symbol		(V)	Min	Тур	Max	Min	Max	Oilles	OL (p.)
t _{PLH}	Propagation	2.7		9.0	16.9	1.0	20.5		15
t _{PHL}	Delay Time			11.5	20.0	1.0	24.0	ns	50
	CP to Q _n	3.3 ± 0.3		7.1	11.0	1.0	13.0	115	15
				9.6	14.5	1.0	16.5		50
t _{PHL}	Propagation Delay	2.7		9.3	17.8	1.0	20.5		15
	MR to Q _n			11.8	21.1	1.0	24.0		50
		3.3 ± 0.3		7.3	11.5	1.0	13.5	ns	15
				9.8	15.0	1.0	17.0	ľ	50
t _S	Setup Time	2.7	8.0			9.5			
	D _n to CP	3.3 ± 0.3	5.5			6.5		ns .	
t _H	Hold Time	2.7	1.0			1.0		ns	
	D _n to CP	3.3 ± 0.3	1.0			1.0		ns	
t _{REC}	Removal Time	2.7	4.0			4.0			
	MR to CP	3.3 ± 0.3	2.5			2.5		ns .	
t _W	Clock Pulse	2.7	8.0			9.5			
	Width	3.3 ± 0.3	5.5			6.5		ns .	
t _W	MR Pulse	2.7	7.5			8.5			
	Width	3.3 ± 0.3	5.0			6.0		ns	
f _{MAX}	Maximum	2.7	55	110		45			15
WPOC	Clock		45	60		40			50
	Frequency	3.3 ± 0.3	95	150		80		MHz	15
	, ,		60	90		50		-	50
t _{OSLH}	Output to Output	2.7			1.5		1.5		50
toshl	Skew (Note 4)	3.3			1.5		1.5	ns	

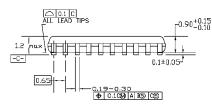

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Capacitance


Symbol	Parameter	,	T _A = +25°C		T _A = -40°0	Units	
		Min	Тур	Max	Min	Max	Oilita
C _{IN}	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD}	Power Dissipation		31				pF
	Capacitance (Note 5)						

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{|N} + I_{CC}}{8 \text{ (per F/F)}}$



20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6. DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M. 1982.

0 - 8° GAGE PLANE 0 - 8° SEATING PLANE R0.09nin

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative