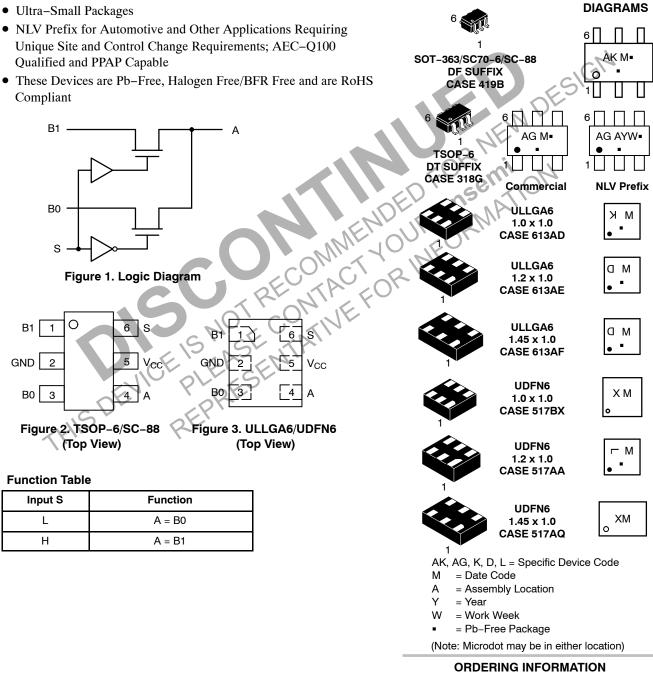
Mux / Demux Bus Switch

7SB3257

The 7SB3257 Mux / Demux Bus Switch is an advanced high-speed line switch in ultra-small footprint.

Features


- High Speed: $t_{PD} = 0.25 \text{ ns} (Max) @ V_{CC} = 4.5 \text{ V}$
- 3 Ω Switch Connection Between 2 Ports
- Power Down Protection Provided on Inputs
- Ultra-Small Packages
- Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

ON Semiconductor®

www.onsemi.com

MARKING

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Table 1. MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	–0.5 to +7.0	V
V _{IN}	Control Pin Input Voltage	–0.5 to +7.0	V
V _{I/O}	Switch Input / Output Voltage	–0.5 to +7.0	V
Ι _{ΙΚ}	Control Pin DC Input Diode Current V _{IN} < GND	-50	mA
I _{OK}	Switch I/O Port DC Diode Current V _{I/O} < GND	-50	mA
Ι _Ο	On-State Switch Current	±128	mA
	Continuous Current Through V _{CC} or GND	±150	mA
I _{CC}	DC Supply Current per Supply Pin	±150	mA
I _{GND}	DC Ground Current per Ground Pin	±150	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
θ_{JA}	Thermal Resistance SC-88 / TSOP-6 (Note 1) ULLGA6/UDFN6	333 496	°C/V
P _D	Power Dissipation in Still Air at 85°C SC–88 / TSOP–6 (Note 1) ULLGA6/UDFN6	200 252	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Mode (Note 2) Machine Mode (Note 3) Charged Device Mode (Note 4)	>2000 >200 N/A	V
ILATCHUP	Latchup Performance Above V _{CC} and Below GND at 85°C (Note 5)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

Tested to EIA/ JESD22-A114-A
 Tested to EIA/ JESD22-A115-A

4. Tested to JESD22-C101+A

5. Tested to EIA / JESD78.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	4.0	5.5	V
VI	Control Pin Input Voltage	0	5.5	V
V _{I/O}	Switch Input / Output Voltage	0	5.5	V
T _A	Operating Free–Air Temperature	-55	+125	°C
Δt / ΔV	Input Transition Rise or Fall Rate Control Input Switch I/O	0 0	5 DC	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

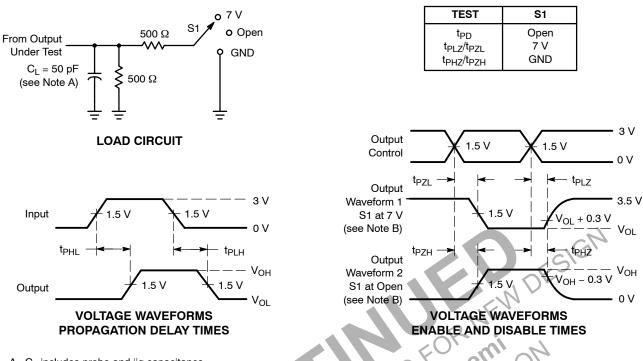

				T _A = 25°C		T _A = −55°C to +125°C			
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IK}	Clamp Diode Voltage	I _{IN} = -18 mA	4.5			-1.2		-1.2	V
V _{IH}	High-Level Input Voltage (Control)		4.0 to 5.5	2.0			2.0		V
VIL	Low-Level Input Voltage (Control)		4.0 to 5.5			0.8		0.8	V
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	5.5			±0.1		±1.0	μA
I _{OFF}	Power Off Leakage Current	$V_{I/O} = 0$ to 5.5 V	0			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	I _O = 0, V _{IN} = V _{CC} or 0 V	5.5			±0.1		±1.0	μA
ΔI_{CC}	Increase in Supply Current (Control Pin)	One input at 3.4 V; Other inputs at V _{CC} or GND	5.5					2.5	mA
R _{ON}	Switch ON Resistance	V _{I/O} = 0, I _{I/O} = 64 mA I _{I/O} = 30 mA	4.5		3 3	7 7		S 7 7	Ω
		V _{I/O} = 2.4, I _{I/O} = 15 mA	4.5		6	15	ENT	15	
		V _{I/O} = 2.4, I _{I/O} = 15 mA	4.0		10	20	n n	20	

Table 3. DC ELECTRICAL CHARACTERISTICS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Table 4. AC ELECTRICAL CHARACTERISTICS

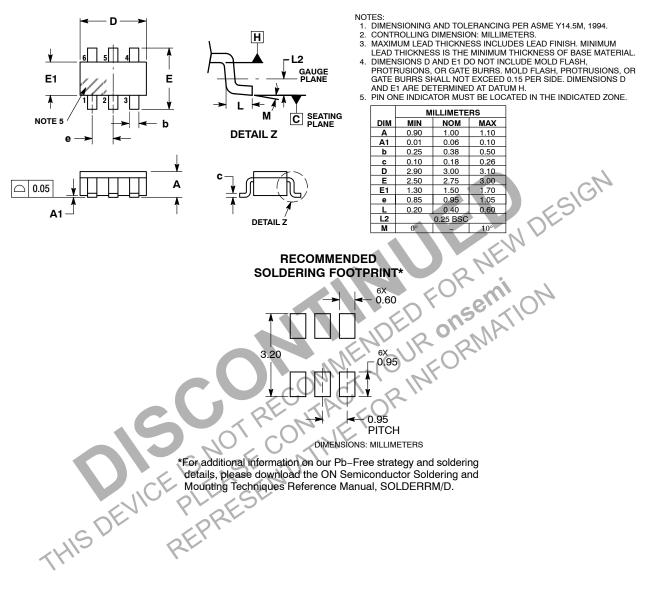
			OWNEYOU	JF I	Γ _A = 25°(c	T _A = - to +1	-55°C 25°C	
Symbol	Parameter	V _{cc} (V)	Test Condition	Min	Тур	Max	Min	Max	Unit
t _{PD}	Propagation Delay, A to B or B to A	4.0 to 5.5	See Figure 4			0.25		0.25	ns
t _{EN}	Output Enable Time	4.5 to 5.5		0.8	2.5	4.2	0.8	4.2	ns
		4.0		0.8	3.0	4.6	0.8	4.6	
t _{DIS}	Output Disable Time	4.5 to 5.5		0.8	3.1	4.8	0.8	4.8	ns
	OF P	4.0		0.8	2.9	4.4	0.8	4.4	
CIN	Control Input Capacitance	5.0	V _{IN} = 3 V or 0		2.0				pF
C _{IO(ON)}	Switch On Capacitance	5.0	Switch ON		10				pF
C _{IO(OFF)}	Switch Off Capacitance	5.0	Switch OFF		3.5				pF

AC Loading and Waveforms

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The output is measured with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 4. Load Circuit and Voltage Waveforms

DEVICE ORDERING INFORMATION

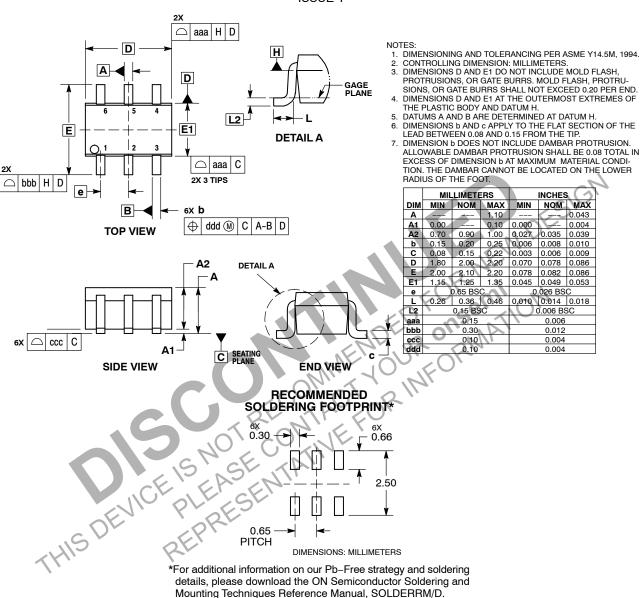

Device	Package	Shipping [†]
7SB3257DTT1G NLV7SB3257DTT1G* 7SB3257DTT2G	TSOP-6 (Pb-Free)	3000 / Tape & Reel
7SB3257DFJ2G	SC-88 (Pb-Free)	3000 / Tape & Reel
7SB3257AMX1TCG	ULLGA6 – 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
7SB3257BMX1TCG	ULLGA6 – 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
7SB3257CMX1TCG	ULLGA6 – 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel
7SB3257MU1TCG	UDFN6 – 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
7SB3257MUTCG	UDFN6 – 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
7SB3257MU3TCG	UDFN6 – 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

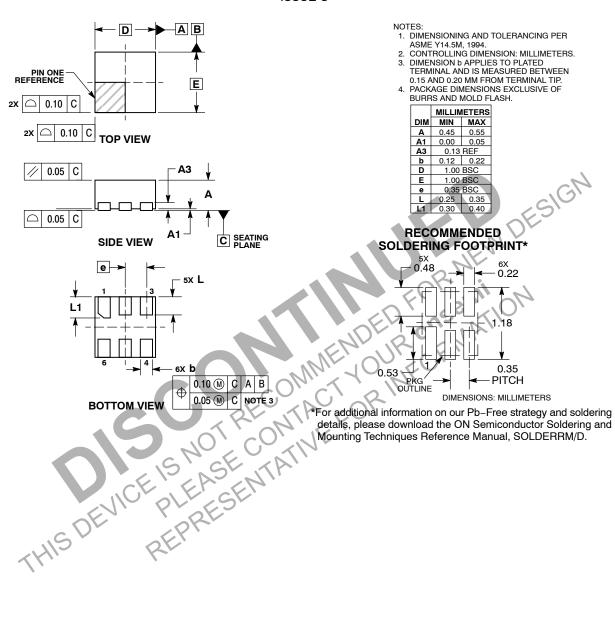
PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE V

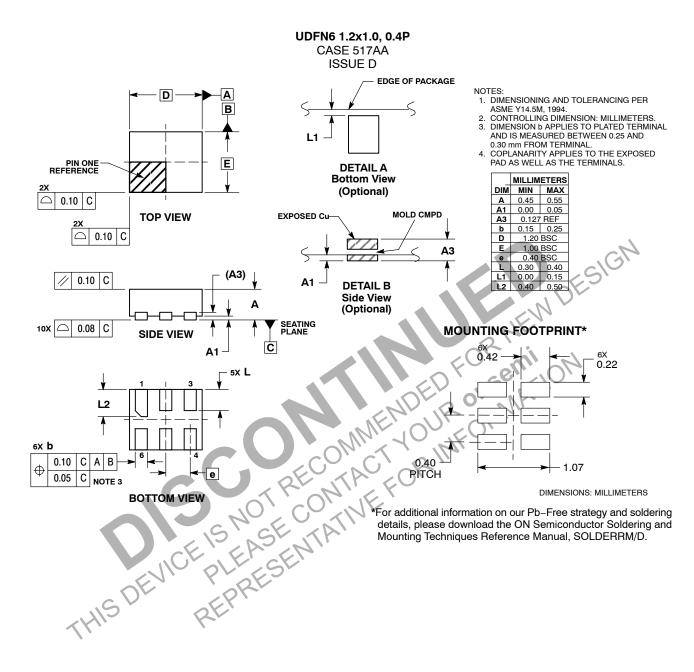

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**

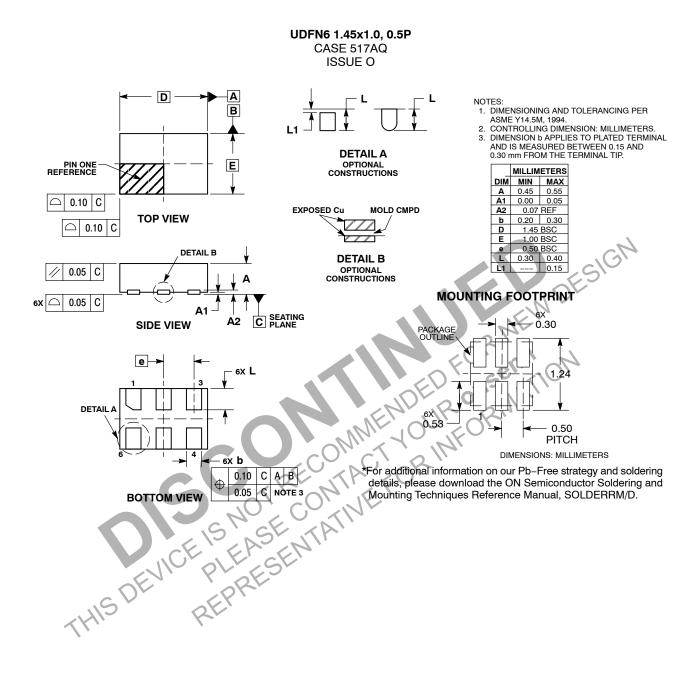
0.043

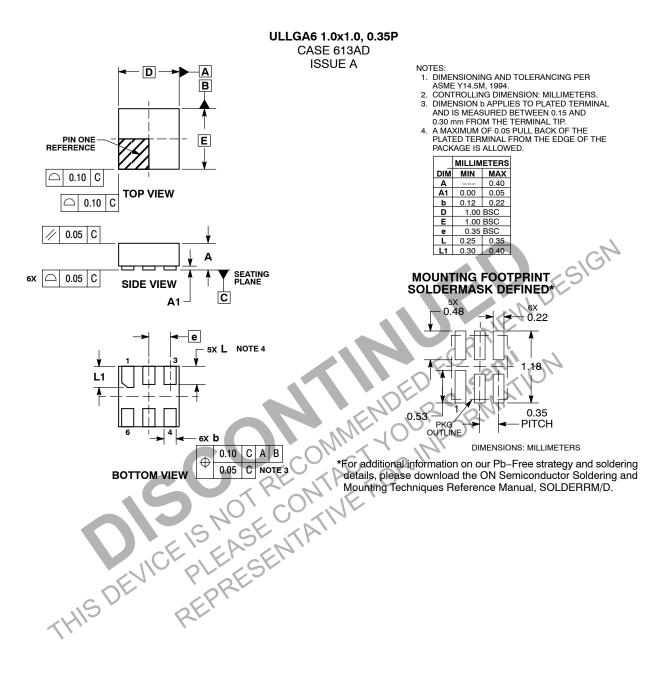

0.004

0.010

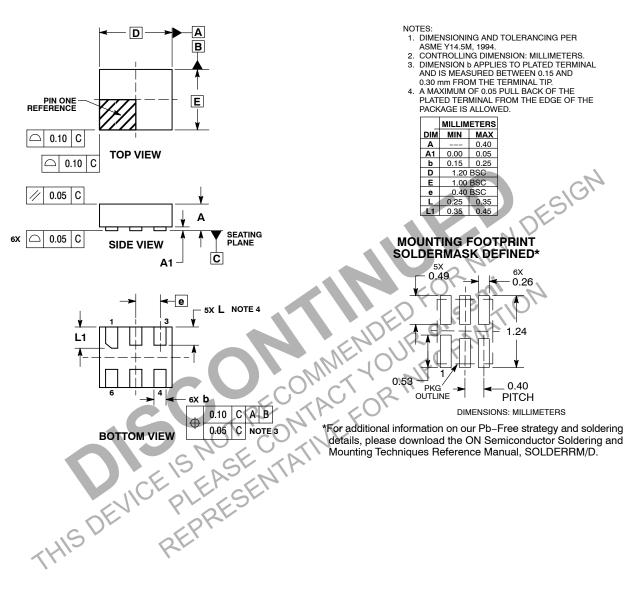


PACKAGE DIMENSIONS

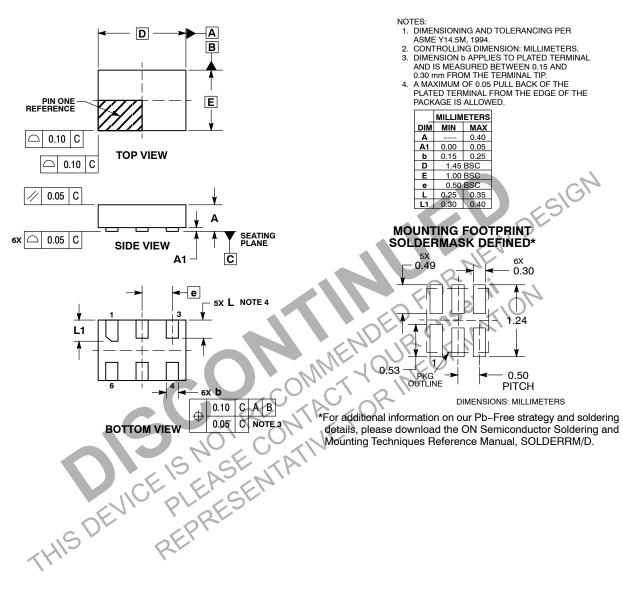

UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O


PACKAGE DIMENSIONS

PACKAGE DIMENSIONS



PACKAGE DIMENSIONS


PACKAGE DIMENSIONS

ULLGA6 1.2x1.0, 0.4P CASE 613AE ISSUE A

PACKAGE DIMENSIONS

ULLGA6 1.45x1.0, 0.5P CASE 613AF ISSUE A

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmlese against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative