8205A

Dual N-Channel MOSFET

GENERAL DESCRIPTION

The 8205Ais a dual N-channel MOS Field Effect Transistor which uses advanced trench technology to provide excellent $R_{DS(on)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch.

FEATURES

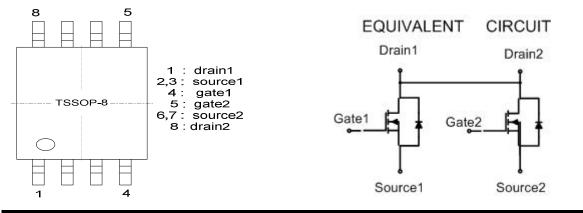
- V_{DS} =20 V
- I_D=6A
- Low on-state resistance Fast switching

 $R_{DS(on)} = 45m\Omega$ (typ.)(V_{GS} = 4.5V, I_D = 2.0A)

 $R_{DS(on)} = 48m\Omega$ (typ.)(V_{GS} = 3.85V, I_D = 2.0A)

 $R_{DS(on)} = 60m\Omega$ (typ.)($V_{GS} = 2.5V$, $I_D = 2.0A$)

- Lead free product is acquired
- Surface Mount Package


APPLICATION

- Battery protection
- Load switch
- Power management

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Device Package	Reel size	Tape width	Quantity
8205A	8250A	TSSOP8	Φ 180mm	8mm	3000 units

PIN DESCRIPTION

PIN NUM	PIN NAME	PIN FUNCTION
1	D	DRAIN
2	S1	SOURCE1
3	S1	SOURCE1
4	G1	GATE2
5	G2	GATE2
6	S2	SOURCE2
7	S2	SOURCE2
8	D	DRAIN

ABSOLUTE MAXIMUM RATINGS (TA = 25° C)

Symbol	Parameter		Value	Unit
V _{DS}	Drain-source Voltage		20	V
ID	Drain Current(continuous)at Tc=25 °C	(Note1)	6	A
I _{DM}	Drain Current (pulsed)	(Note2)	24	A
V _{GS}	Gate-source Voltage		±12	V
PD	Power Dissipation ($T_c = 25^{\circ}C$)	(Note1)	1.25	W
Tstg	Operating and Storage Temperature Rang		-55 to +150	°C

Notes a. PW<10us,Duty Cycle<1%,V_{GS}=4.5V

b. Mounted on ceramic substrate of 45 cm²x 2.2mm.

Caution: These values must not be exceeded under any conditions.

Remark: The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

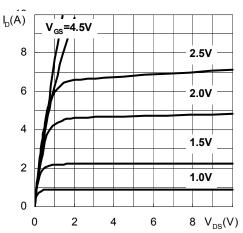
Thermal Data

Symbol	Parameter	Max.	Unit	
Rthj-amb	Thermal Resistance Junction- ambient	83	°CNV	

Electrical Characteristics (T_c = 25℃)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D =250uA, V _{GS} =0V	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V,V _{GS} =0V			1	μA
I _{GSS}	Gate Leakage Current	V _{GS} =±10V,V _{DS} =0V			±1	μA
V _{GS(th)}	Gate threshold voltage	V _{DS} =V _{GS} ,I _D = 250uA	0.5		1.15	V
		V _{GS} =4.5V,I _D =2A		45	50	mΩ
R _{DS(on)}	Drain to Source On-state Resistance	V _{GS} =3.85V,I _D =2A		48	52	mΩ
		V _{GS} =2.5V,I _D =2A		60	70	mΩ
C _{iss}	Input Capacitance			370		pF
C _{oss}	Output Capacitance	V _{DS} =15V,V _{GS} =0V,f=1MHz		89		pF
C _{rss}	Reverse Transfer Capacitance			9.7		pF
t _{d(on)}	Turn-on Delay Time	V_{DD} =10V,I _D =3A, V _{GS} =4.5V,R _G =4.7		200		ns
tr	Rise Time	(Note2,3)		236		ns

8205A


$t_{d(off)}$	Turn-off Delay Time		36		ns
t _f	Fall Time		165		ns
Qg	Total Gate Charge	V _{DD} =16V,V _{GS} =4.5V,	7.5		nC
Q_{gs}	Gate to Source Charge	I _D =6A	2.5		nC
Q_{gd}	Gate to Drain Charge	(Note2,3)	1.3		nC
V _{SD} (*)	Body Diode Forward Voltage	I _F =6A,V _{GS} =0V	0.74	1.2	V
T _{rr}	Reverse Recovery Time	V _{DD} =10V,I _F =6A,di/dt=100A/us (Note2)	80		ns

Notes:

- 1. Surface Mounted on FR4 Board, t≤10sec
- 2. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%
- 3. Essentially independent of operating temperature
- (*)Pulsed: Pulse duration

Typical characteristics (25℃ unless noted)

Figure 1 Output Characteristics

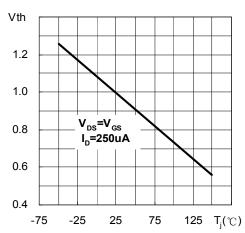


Figure 2 Transfer Characteristics

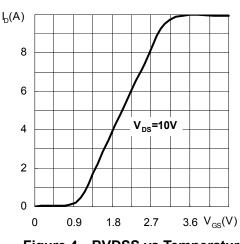


Figure 4 BVDSS vs.Temperature

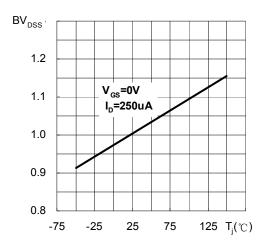


Figure 5 RDSON vs. Temperature

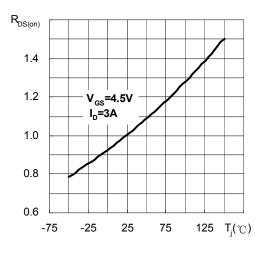


Figure 7 Capacitance

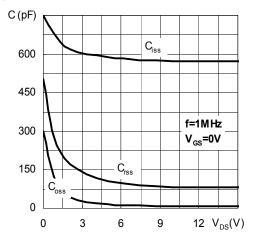
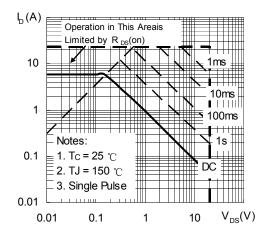



Figure 9 Safe Operating Area

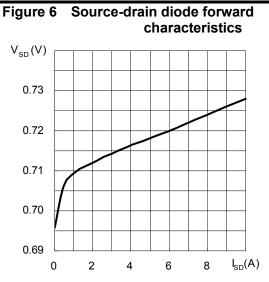


Figure 8 Gate Charge

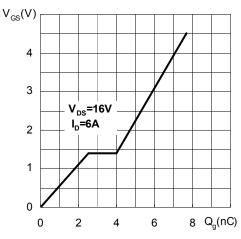


Figure 10 Maximum Drain Current vs Case Temperature

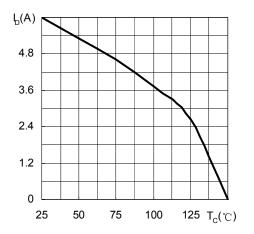
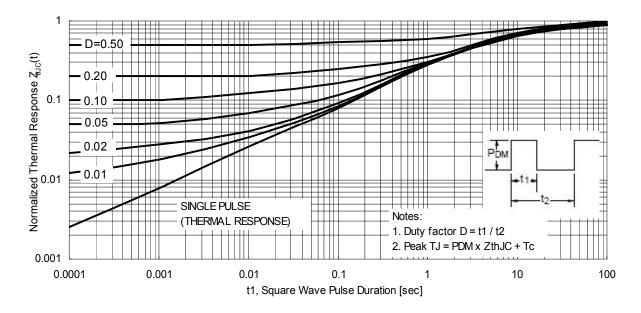
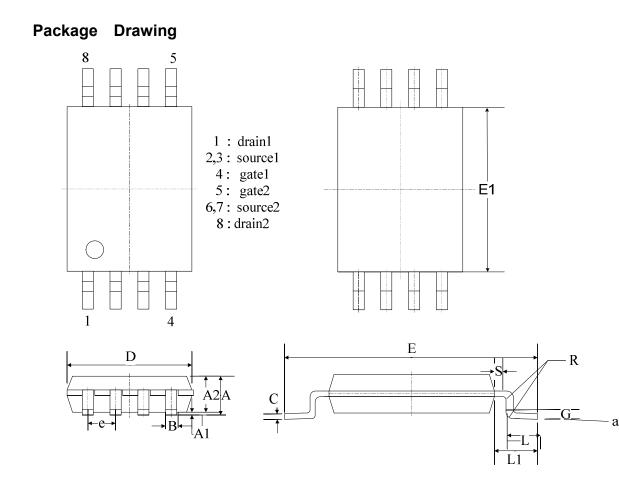




Figure 11 Maximum Transient Thermal impedance

Dimensions (unit: mm)

DIM		Α	A(1)	A(2)	В	С	D	Е	E1	е	G	L	L1	а	R	S
мм	Min.	1.05	0.05	0.99	0.19		2.9	6.2	4.3	0.65 BSC GAGI	0.254 GAGE	0.45	0.9	0°	0.09	0.2
	Nom.	1.1	0.1	1.02	0.25	0.127	3	6.4	4.4			0.6	1	4°		
	Max.	1.2	0.15	1.05	0.3		3.2	6.6	4.5	200	PLANE	0.75	1.1	8°		

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- RZC Microelectronics Co., Ltd. exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing RZC products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that RZC products are used within specified operating ranges as set forth in the most recent RZC products specifications.
- The RZC products listed in this document are intended for usage in general electronics applications (personal equipment, office equipment, domestic appliances, etc.). These RZC products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of RZC products listed in this document shall be made at the customer's own risk.
- RZC is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.