

576-BIT BIPOLAR RAM (64x9) 82509

JUNE 1975

DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S09 is a 576-Bit, Schottky clamped TTL, random access memory, organized as 64X9. This organization allows byte manipulation of data, including parity. Where parity is not monitored, the ninth bit can be used as a flag or status indicator for each word stored. With a typical access time of 30ns, it is ideal for scratch-pad, push-down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82S09 is fully TTL compatible, and features open collector outputs, chip enable input, and a very low current PNP input structure to enhance memory expansion.

During WRITE operation, the logic state of the device output follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.

The 82S09 is available in the commercial and military temperature ranges. For the commercial temperature range (0°C to +75°C) specify N82S09, I. For the military temperature range (-55°C to +125°C) specify S82S09, I.

FEATURES

- ORGANIZATION 64 X 9
- ADDRESS ACCESS TIME: S82S09 - 80ns, MAXIMUM N82S09 - 45ns, MAXIMUM
- WRITE CYCLE TIME: S82S09 - 70ns, MAXIMUM N82S09 - 45ns, MAXIMUM
- POWER DISSIPATION 1.3mW/BIT TYPICAL
- INPUT LOADING: S82S09 - (-150µA) MAXIMUM N82S09 - (-100µA) MAXIMUM
- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT **DURING WRITE**
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- CHIP ENABLE FOR WORD EXPANSION
- BYTE I/O MANIPULATION, INCLUDING PARITY

APPLICATIONS **BUFFER MEMORY** CONTROL REGISTER **FIFO MEMORY** PUSH DOWN STACK SCRATCH PAD

TRUTH TABLE

MODE	CE	WE	١ _N	O _N
READ	0	1	х	Complement of Data Stored
WRITE "0"	0	0	0	1
WRITE "1"	0	0	1	0
DISABLED	1	Х	x	1

X = Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER ¹	RATING	UNIT
V _{CC}	Power Supply Voltage	+7	Vdc
V _{in}	Input Voltage	+5.5	Vdc
V _{OH}	High Level Output Voltage (82S10)	+5.5	Vdc
Τ _Α	Operating Temperature Range (N82S09) (S82S09)	0 [°] to +75 [°] −55 [°] to +125 [°]	°C °C
T _{stg}	Storage Temperature Range	-65° to $+150^{\circ}$	°C

ELECTRICAL CHARACTERISTICS⁷

$\begin{array}{ll} S82S09 & -55^{\circ}C \leqslant T_{A} \leqslant +125^{\circ}C, \, 4.5V \leqslant V_{CC} \leqslant 5.5 \\ N82S09 & 0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \, 4.75V \leqslant V_{CC} \leqslant 5.25 \end{array}$

PARAMETER ¹		TEST CONDITIONS	S82S09			N82S09			
			MIN	TYP ²	ΜΑΧ	MIN	TYP ²	MAX	UNIT
VIL	Low Level Input Voltage	V _{CC} = MIN			.80			.85	V
V _{IH}	High Level Input Voltage	V _{CC} = MAX	2.2			2.0			v
V _{IC}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -12mA (Note 5)		-1.0	~1.5		-1.0	-1.5	v
V _{OL}	Low Level Output Voltage	V _{CC} = MIN, I _{OL} = 6.4mA (Note 6)		0.35	0.50		0.35	0.5	V
I _{OLK}	Output Leakage Current	V _{CC} = MAX, V _{OUT} = 5.5V (Note 4)		1	60		1	40	μΑ
կլ	Low Level Input Current	V _{IN} = 0.45V		-10	- 150		-10	-100	μA
Чн	High Level Input Current	V _{IN} = 5.5V		1	40		1	25	μA
Icc	V _{CC} Supply Current	V _{CC} = MAX (Note 3)		150	200		150	190	mA
C _{IN}	Input Capacitance	V _{CC} = 5.0V, V _{IN} = 2.0V		5			5		pF
Соит	Output Capacitance	V _{CC} = 5.0V, V _{OUT} = 2.0V (Note 4)		8			8		pF

NOTES:

1. All voltage values are with respect to network ground terminal.

2. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

3. ICC is measured with the write enable and memory enable input grounded, all other inputs at 4.5V, and the outputs open.

4. Measured with V_{IH} applied to \overline{CE} .

5. Test each input one at the time.

6. Measured with the logic "0" stored. Output sink current is supplied through a resistor to V_{CC} .

7. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up.

		TEST CONDITIONS	S82S09			N82S09			
PARAMETER		TEST CONDITIONS	MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	UNIT
Propagation Delays									
T _{AA}	Address Access Time			30	80		30	45	ns
T _{CE}	Chip Enable Access Time		}	15	50		15	30	ns
т _{ср}	Chip Enable Output Disable Time			15	50		15	30	ns
Write S	et-up Times	C _L = 30pF							
TWSA	Address to Write Enable	$R_1 = 600\Omega$ $R_2 = 900\Omega$	10	0		5	0		ns
T _{WSD}	Data In to Write Enable	112 00012	50	25		35	25		ns
Twsc	CE to Write Enable		10	0		5	0		ns
Write Hold Times									
TWHA	Address to Write Enable		10	0		5	0		ns
Тино	Data In to Write Enable		5	0	E	5	0		ns
т _{wнс}	CE to Write Enable		10	0		5	0		ns
Т _{WP}	Write Enable Pulse Width (Note 2)		50	25		35	25		ns

SWITCHING CHARACTERISTICS³

AC TEST LOAD

NOTES:

- 1. Typical values are at V_{CC} = +5.0V, and T_A = +25°C. 2. Minimum required to guarantee a WRITE into the slowest bit.

3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up.

SWITCHING PARAMETERS MEASUREMENT INFORMATION

pulse and end of valid INPUT DATA.

T_{WHA} Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.