256-BIT BIPOLAR RAM (256x1 RAM) | 82S116 (82S116 TRI-STATE) (82S117 OPEN COLLECTOR)

FEBRUARY 1975

DIGITAL 8000 SERIES TTL/MEMORY

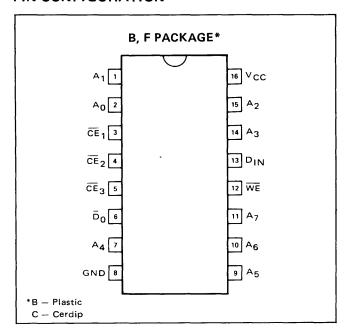
DESCRIPTION

The 82S116 and 82S117 are Schottky clamped TTL, read/write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state output options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading to 25µA for a "1" level, and -100μ A for a "0" level.

During WRITE operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.

Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.

Both 82S116 and 82S117 devices are available in the commercial temperature range. For the commercial temperature range, (0°C to +75°C) specify N82S116/117, B or F.

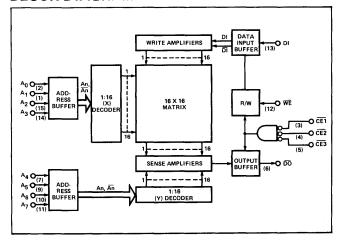

FEATURES

- ORGANIZATION 256 X 1
- ADDRESS ACCESS TIME 40ns, MAXIMUM
- WRITE CYCLE TIME 25ns, MAXIMUM
- POWER DISSIPATION 1.5mW/BIT TYPICAL
- INPUT LOADING (-100µA) MAXIMUM
- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT **DURING WRITE**
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION: **TRI-STATE - 82S116 OPEN COLLECTOR - 82S117**
- 16 PIN CERAMIC DIP

APPLICATIONS

BUFFER MEMORY WRITABLE CONTROL STORE **MEMORY MAPPING PUSH DOWN STACK SCRATCH PAD**

PIN CONFIGURATION



TRUTH TABLE

			DOUT			
MODE	CE*	WE	DIN	82\$116	82\$117	
READ	0	1	Х	STORED DATA	STORED DATA	
WRITE "0"	0	0	0	1	1	
WRITE "1"	0	0	1	0	0	
DISABLED	1	Х	Х	High-Z	1	

*"0" = All \overline{CE} inputs low; "1" = one or more \overline{CE} inputs high.

BLOCK DIAGRAM

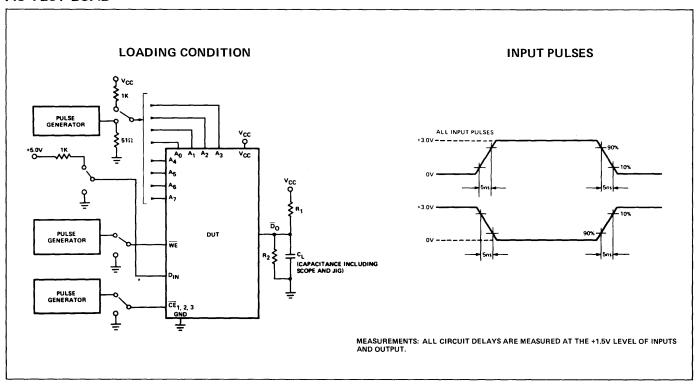
X = Don't care.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
V _{CC} Power Supply Voltage	+7	Vdc
V _{IN} Input Voltage	+5.5	Vdc
V _{OUT} High Level Output Voltage (82S117)	+5.5	Vdc
V _O Off-State Output Voltage (82S116)	+5.5	Vdc
T _A Operating Temperature Range	0° to +75°	°c
T _{stg} Storage Temperature Range	-65° to +150°	°c

ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant 75^{\circ}C$, $4.75V \leqslant V_{CC} \leqslant 5.25V$

PARAMETER		TEST CON	TEST CONDITIONS MIN		LIMITS			NOTES
		1EST CONT			TYP ² MAX		UNIT	
V _{IH}	High-Level Input Voltage	V _{CC} = 5.25V		2.0			V	
V_{IL}	Low-Level Input Voltage	V _{CC} = 4.75V	V _{CC} = 4.75V			0.85	V	1
V _{IC}	Input Clamp Voltage	V _{CC} = 4.75V, I ₁	V _{CC} = 4.75V, I _{IN} = -12 mA		-1.0	-1.5	V	1,8
V _{OH}	High-Level Output Voltage (82S116)	$V_{CC} = 4.75V, I_{OH} = -3.2 \text{ mA}$		2.6			V	1,6
V _{OL}	Low-Level Output Voltage	V _{CC} = 4.75V, I _{OL} = 16 mA			0.35	0.45	٧	1,7
lork	Output Leakage Current (82S117)	V _{OUT} = 5.5V			1	40	μΑ	5
I _{O(OFF)}	HI-Z State Output Current	V _{OUT} = 5.5V			1	40	μΑ	5
	(82S116)	V _{OUT} = 0.45V			-1	-40	μΑ	5
l _{IH}	High-Level Input Current	V _{CC} = 5.25V, V _{IN} = 5.5V			1	25	μΑ	8
I _{IL}	Low-Level Input Current	V _{CC} = 5.25V, V _{IN} = 0.45V			-10	-100	μΑ	8
Ios	Short-Circuit Output Current (82S116)	V _{CC} = 5.25V, V _O = 0V		-20		-70	mA	3
I _{CC}	V _{CC} Supply Current (82S116)	V _{CC} = 5.25V			80	115	mA	4
	V _{CC} Supply Current (82S117)	V _{CC} = 5.25V			80	115	mA	4
C _{IN}	Input Capacitance	V _{IN} = 2.0V	\/ = E 0\/		5		pF	
c_{out}	Output Capacitance	V _{OUT} = 2.0V	V _{CC} = 5.0V		8		рF	

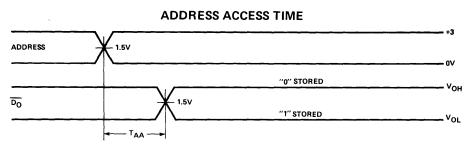

NOTES

- 1. All voltage values are with respect to network ground terminal.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 3. Duration of the short-circuit should not exceed one second.
- 4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.
- 5. Measured with V_{IH} applied to $\overline{CE1}$, $\overline{CE2}$ and $\overline{CE3}$.
- 6. Measured with a logic "0" stored and V_{1L} applied to $\overline{CE_1}$, $\overline{CE_2}$ and $\overline{CE_3}$.
- 7. Measured with a logic "1" stored. Output sink current is supplied through a resistor to VCC.
- 8. Test each input one at the time.

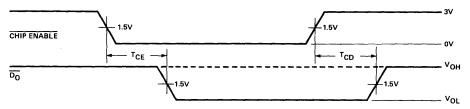
SWITCHING CHARACTERISTICS $0^{\circ}C \le T_{A} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

PARAMETER		TEST CONDITIONS		LIMITS		UNIT	NOTE	
		TEST CONDITIONS	ST CONDITIONS MIN		MAX			
Propaga	Propagation Delays							
T _{AA}	Address Access Time			30	40	ns		
T _{CE}	Chip Enable Access Time	$R_1 = 270\Omega$		15	25	ns		
T _{CD}	Chip Enable Output Disable Time	$R_2 = 600\Omega$		15	25	ns		
T_{WD}	Write Enable to Output Disable Time	C _L = 30pF		30	40	ns		
Write S	Write Set-up Times							
T _{WSA}	Address to Write Enable		0	-5		ns		
T _{WSD}	Data In to Write Enable		25	15		ns	I	
T_{WSC}	CE to Write Enable	•	0	-5		ns		
Write H	Write Hold Times							
T _{WHA}	Address to Write Enable		0	-5		ns		
T_{WHD}	Data In to Write Enable		0	-5		ns		
T _{WHC}	CE to Write Enable		0	-5		ns		
T _{WP}	Write Enable Pulse Width		25	15		ns	2	

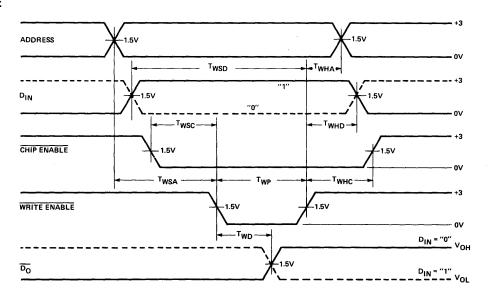
AC TEST LOAD



NOTES:


- 1. Typical values are at $V_{\mbox{\scriptsize CC}}$ = +5.0V, and $T_{\mbox{\scriptsize A}}$ = +25 $^{\circ}$ C.
- 2. Minimum required to guarantee a WRITE into the slowest bit.

SWITCHING PARAMETERS MEASUREMENT INFORMATION


READ CYCLE

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

MEMORY THANKS DELIVERYOR						
T_{CE}	Delay between beginning of CHIP ENABLE low	T_WP	Width of WRITE ENABLE pulse.			
	(with ADDRESS valid) and when DATA OUTPUT becomes valid.		Required delay between beginning of valid ADD-RESS and beginning of WRITE ENABLE pulse.			
T _{CD}	Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.	T _{WSD}	Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.			
TAA	Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.	T_{WD}	Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.			
Twsc	Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.	T _{WHC}	Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.			
T _{WHD}	Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.	T _{WHA}	Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.			