

64-BIT BIPOLAR HIGH SPEED | WRITE-WHILE-READ RAM (32x2 RAM)

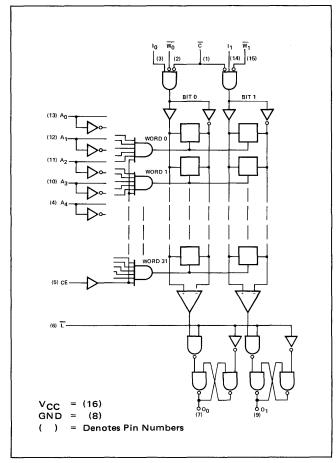
DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S21 is a TTL 64 bit Write-While-Read Random Access Memory organized in 32 words of 2 bits each. The 82S21 is ideally suited for high speed buffers and as the memory element in high speed accumulators.

Words are selected through a 5 input decoder when the Read-Write enable input, CE is at logic "1". $\overline{W_0}$ and $\overline{W_1}$ are the write inputs for bit 0 and bit $\overline{1}$ of the word selected. \overline{C} is the write control input. When $\overline{W_X}$ and \overline{C} are both at logic "0" data on the I_0 and I_1 data lines are written into the addressed word. The read function is enabled when either $\overline{W_X}$ or \overline{C} is at logic "1".

An internal latch is on the chip to provide the Write-While-Read capability. When the latch control line, \overline{L} , is logic "1" and data is being read from the 82S21, the latch is effectively bypassed. The data at the output will be that of the addressed word. When \overline{L} goes from a logic "1" to logic "0" the outputs are latched and will remain latched regardless of the state of any other address or control line. When \overline{L} goes from "0" to "1" the outputs unlatch and the outputs will be that of the present address word.


FEATURES

- BUFFERED ADDRESS LINES
- ON CHIP LATCHES
- ON CHIP DECODING
- BIT MASKING CONTROL LINES
- ENABLE CONTROL LINE
- OPEN COLLECTOR OUTPUTS WITH 40mA CAPABILITY
- PROTECTED INPUTS
- VERY HIGH SPEEDS (25ns TYP)

APPLICATIONS

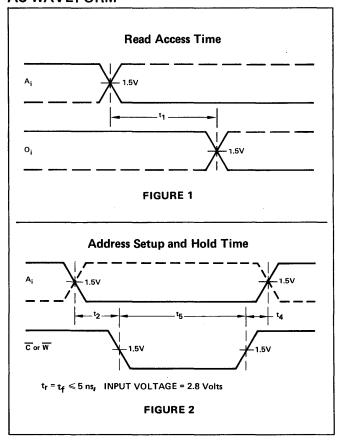
SCRATCH PAD MEMORY BUFFER MEMORY ACCUMULATOR REGISTER CONTROL STORE

LOGIC DIAGRAM

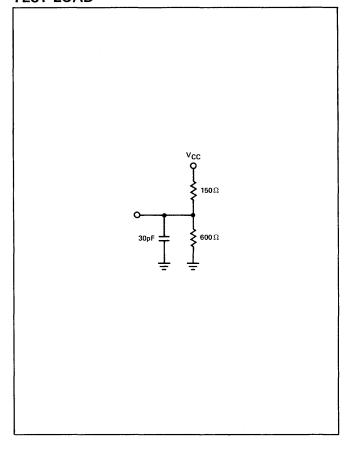
TRUTH TABLE

CE	c	$\overline{w_0}$	W ₁	ī	Mode	Outputs				
X	Х	X	Х	0	Output Hold	Data from last addressed word when CE = "1"				
0	х	×	×	1	Read & Write Disabled	Disabled logic "1"				
1	1	×	×	Х	Read	Data stored in addressed word				
1	0	1	1	X	Read	Data stored in addressed word				
1	0	0	0	0	Write Data	Data from last word address when L went from "1" to "0"				
1	0	0	0	1	Write Data	Data being written into memory				
1	0	0	1	×	Write Data into Bit 0 Only	If $\overline{L} = 0$: Data from last word address when L went from "1" to "0"				
1	0	1	0	х	Write Data into Bit 1 Only	If $\overline{L} = 1$: Data being written into the selected bit location and stored in other addressed location				

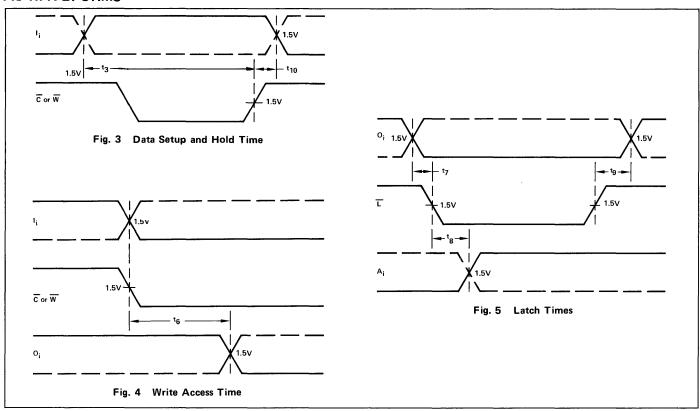
SIGNETICS 64-BIT HIGH SPEED WRITE-WHILE-READ ROM ■ 82S21

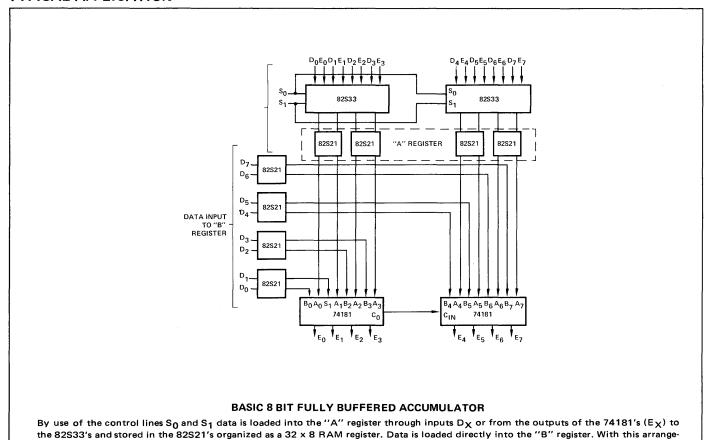

ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant 75^{\circ}C$; $4.75V \leqslant V_{CC} \leqslant 5.25V$

		LIN	MITS			
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	NOTES
"0" Output Voltage			.45	V	V _{out} = 32mA	
"1" Output Leakage Current			40	μΑ	V _{out} = 5.5V	
"0" Input Current (All Inputs)			-1.6	mA	V _{in} = 0.45V	
"1" Input Current (All Inputs)			25	μΑ	V _{in} = 5.5V	
Input "0" Voltage (V _{IL})			0.85	V		
Input "1" Voltage (V _{IH})	2.0	1	1	V		
Power Consumption			130/683	mA/mW		
Input Clamp Voltage	-1.2			V	I _{in} = -18mA	


SWITCHING CHARACTERISTICS $0 \le T_A \le 75^{\circ}C$, $4.75 \le V_{CC} \le 5.25V$

		LIMITS					
CHARACTERISTICS		MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	NOTES
Read Access Time Address to Output	t ₁		25	50	ns		
Address Set-Up Time	t ₂	ĺ	8	15	ns		
Data Set-Up Time	t ₃	1	15	20	ns		
Address Hold Time	t ₄	1		0	ns		
Control or Write Pulse Width	t ₅		15	20	ns		
Write Access Time	t ₆		20	25	ns		ĺ
Address to Latch Set-Up Time	t ₇		25	50	ns		
Latch Address to Address Hold Time	t ₈		7	10	ns		
Delatch Access Time	tg		15	25	ns		[
Data Hold Time	t ₁₀		0	5	ns		


AC WAVEFORM


TEST LOAD

AC WAVEFORMS

TYPICAL APPLICATION

ment, the function A+B → A (A plus B into A) can be performed in 70ns, typically, starting from data stored in the 82S21's.