

256-BIT BIPOLAR PROGRAMMABLE ROM (32x8 ROM) | (82S23 OPEN COLLECTOR) (82S123 TRI-STATE)

FEBRUARY 1975 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S23 (Open Collector Outputs) and the 82S123 (Tri-State Outputs) are Bipolar 256-Bit Read Only Memories, organized as 32 words by 8 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S23 and 82S123 devices are supplied with all outputs at logical "0". Outputs are programmed to a logic "1" level at any specified address by fusing a Ni-Cr link matrix.

The 82S23 and 82S123 are fully TTL compatible, and include on-chip decoding and one chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.

Both 82S23 and 82S123 devices are available in the commercial and military temperature ranges. For the commercial temperature range (0° C to +75 $^{\circ}$ C) specify N82S23/123, B or F. For the military temperature range (-55 $^{\circ}$ C to +125 $^{\circ}$ C) specify S82S23/123, F only.

FEATURES

- ORGANIZATION 32 X 8
- ADDRESS ACCESS TIME: S82S23/S82S123 – 65ns, MAXIMUM N82S23/N82S123 – 50ns, MAXIMUM
- POWER DISSIPATION 1.3mW/BIT TYPICAL
- INPUT LOADING: S82S23/123 – (-150μA) MAXIMUM N82S23/123 – (-100μA) MAXIMUM
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION: OPEN COLLECTOR – 82S23 TRI-STATE – 82S123
- NO SEPARATE "FUSING" PINS
- UNPROGRAMMED OUTPUTS ARE "0" LEVEL
- 16-PIN CERAMIC DIP

APPLICATIONS

PROTOTYPING/VOLUME PRODUCTION SEQUENTIAL CONTROLLERS FORMAT CONVERSION HARDWIRED ALGORITHMS RANDOM LOGIC CODE CONVERSION

82S23

82S123

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{CC}	Power Supply Voltage	+7	Vdc
V _{IN}	Input Voltage	+5.5	Vdc
V _{он}	High Level Output Voltage (82S23)	+5.5	Vdc
vo	Off-State Output Voltage (82S123)	+5.5	Vdc
TA	Operating Temperature Range (N82S23/123) (S82S23/123)	0° to +75° –55° to +125°	°c °c
T _{stg}	Storage Temperature Range	-65° to $+150^{\circ}$	°C

PARAMETER		TEST CONDITIONS	S82S23/S82S123			N82S23/N82S123			
		TEST CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT
V _{OL}	"0" Output Voltage	I _{OUT} = 16mA			0.5			0.45	V
Ιοικ	Output Leakage Current (82S23)	<u>CE</u> = "1", V _{OUT} = 5.5V			50			40	μΑ
IO(OFF)	Hi-Z State Output Current (82S123)	CE = "1", V _{OUT} = 5.5V CE = "1", V _{OUT} = 0.5V		1	50 -50			40 -40	μΑ μΑ
V _{он}	"1" Output Voltage (82S123)	CE = "0", I _{OUT} = -2mA, "1" STORED	2.4			2.4			V
CIN	Input Capacitance	V _{CC} = 5.0V, V _{IN} = 2.0V		5			5		pF
COUT	Output Capacitance	V_{CC} = 5.0V, V_{OUT} = 2.0V		8			8		pF
IIL IIL	"0" Input Current	V _{IN} = 0.45V			- 150			-100	μA
I _{IH}	"1" Input Current	V _{IN} = 5.5V			50			50	μA
VIL	"0" Level Input Voltage				0.8			0.85	V
VIH	"1" Level Input Voltage		2.0			2.0			V
Icc	V _{CC} Supply Current			65	85		65	77	mA
V _{IC}	Input Clamp Voltage	I _N = -18mA		-0.8	-1.2		-0.8	-1.2	V
los	Output Short Circuit Current (82S123)	V _{OUT} = 0V	-20		- 100	-20		-90	mA

SWITCHING CHARACTERISTICS

	TEST CONDITIONS	S82S23/S82S123			N82S23/N82S123			
FARAINETER	TEST CONDITIONS	MIN	TYP ²	MAX	MIN	TYP ²	MAX	UNIT
Propagation Delay								
T _{AA} Address to Output	C _L = 30pF		35	65		35	50	ns
T _{CD} Chip Disable to Output	$R_1 = 270\Omega$		25	40		25	35	ns
T _{CE} Chip Enable to Output	$R_2 = 600 \Omega$		25	40		25	35	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. Typical values are at V_{CC} = 5.0V, T_A = +25°C.

SIGNETICS 256-BIT BIPOLAR PROGRAMMABLE ROM (32 X 8 PROM) = 82S23, 82S123

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT			
Power Sup	Power Supply Voltage								
V _{CCP} ¹	To Program	I _{CCP} = 250 ± 50mA (Transient or steady state)	9.5	10.0	10.5	V			
V _{CCH}	Upper Verify Limit		5.3	5.5	5.7	v			
V _{CCL}	Lower Verify Limit		4.3	4.5	4.7	v			
Vs ³	Verify Threshold		0.9	1.0	1.1	V			
ICCP	Programming Supply Current	V _{CCP} = +10.0 ± 0.5V	200	250	300	mA			
Input Vol	Input Voltage								
V _{IH}	Logical "1"		2.4		5.5	V			
VIL	Logical "0"		0	0.4	0.8	v			
Input Cur	Input Current								
IIH	Logical "1"	V _{IH} = +5.5V			50	μΑ			
կլ	Logical "0"	V _{1L} = +0.4V			-500	μΑ			
V _{OUT} ²	Output Programming Voltage	I _{OUT} = 65 ± 3mA (Transient or steady state)	15.0	15.5	16.0	V			
Ιουτ	Output Programming Current	V _{OUT} = +15.5 ± 0.5V	62	65	68	mA			
Т _R	Output Pulse Rise Time		10		50	μs			
tp	CE Programming Pulse Width		1		2	ms			
t _V	Verify Delay		50			μs			
t _D	Pulse Sequence Delay		10			μs			
T _{PR}	Programming Time	$V_{CC} = V_{CCP}$			2.5	sec			
T _{PS}	Programming Pause	V _{CC} = 0V	5			sec			
$\frac{T_{PR}^{4}}{T_{PR}^{+}T_{PS}}$	Programming Duty Cycle				33	%			

PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $T_A = +25^{\circ}C$

PROGRAMMING PROCEDURE

- 1. Terminate all device outputs with a 10K $\!\Omega$ resistor to VCC.
- 2. Select the Address to be programmed, and raise V_{CC} to $V_{CCP} = +10 \pm 0.5V$.
- 3. After 10 μ s delay, apply IOUT = 65 ± 3mA to the output to be programmed. Program one output at a time.
- 4. After 10μ s delay, pulse the \overline{CE} input to logic "0" for 1 to 2 ms.
- 5. After 10μ s delay, remove IOUT from the programmed output.
- 6. After 10µs delay, return V_{CC} to 0V.

NOTES:

- 1. Bypass V_{CC} to GND with a $0.01\mu F$ capacitor to reduce voltage spikes.
- 2. Care should be taken to insure that +15.5 ± 0.5V output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.

7. To verify programming, after 50µs delay, raise V_{CC}

to V_{CCH} = +5.5 \pm .2V, and apply a logic "0" level

to the CE input. The programmed output should remain

in the "1" state. Again, lower VCC to VCCL = +4.5

 \pm .2V, and verify that the programmed output remains

8. Raise V_{CC} to V_{CCP} = +10 \pm 0.5V and repeat steps 3

9. After 10μ s delay, repeat steps 2 through 8 to program

through 7 to program other bits at the same address.

in the "1" state.

all other address locations.

- 3. V_S is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
- Continuous fusing for an unlimited time is also allowed, provided that a 33% duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period (V_{CC} = 0V) of 4ms.

AC TEST FIGURE AND WAVEFORM

TYPICAL FUSING PATH

TYPICAL PROGRAMMING SEQUENCE

SIGNETICS 256-BIT BIPOLAR PROGRAMMABLE ROM (32 X 8 PROM) = 82S23, 82S123

MANUAL PROGRAMMER

TIMING SEQUENCE

26