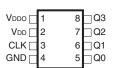

GENERAL DESCRIPTION

The 8304I is a low skew, 1-to-4 Fanout Buffer. The 8304I is characterized at full 3.3V for input V $_{\scriptscriptstyle DD}$, and mixed 3.3V and 2.5V for output operating supply modes (V $_{\scriptscriptstyle DDO}$). Guaranteed output and part-to-part skew characteristics make the 8304I ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- Four LVCMOS / LVTTL outputs
- · LVCMOS clock input
- CLK can accept the following input levels: LVCMOS, LVTTL
- Maximum output frequency: 166MHz
- Output skew: 60ps (maximum)
- Part-to-part skew: 650ps (maximum)
- Small 8 lead SOIC package saves board space
- 3.3V input, outputs may be either 3.3V or 2.5V supply modes
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) compliant package

BLOCK DIAGRAM

PIN ASSIGNMENT

8304I8-Lead SOIC
3.8mm x 4.8mm, x 1.47mm package body
M Package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1	V _{DDO}	Power		Output supply pin. Connect to 3.3V or 2.5V.
2	V _{DD}	Power		Positive supply pin. Connect to 3.3V.
3	CLK	Input	Pulldown	LVCMOS / LVTTL clock input.
4	GND	Power		Power supply ground. Connect to ground.
5	Q0	Output		Single clock output. LVCMOS / LVTTL interface levels.
6	Q1	Output		Single clock output. LVCMOS / LVTTL interface levels.
7	Q2	Output		Single clock output. LVCMOS / LVTTL interface levels.
8	Q3	Output		Single clock output. LVCMOS / LVTTL interface levels.

NOTE: Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4	pF
C _{PD}	Power Dissipation Capacitance (per output)	$V_{DD}, V_{DDO} = 3.465V$			15	pF
R	Input Pulldown Resistor			51		kΩ
R _{out}	Output Impedance			7		Ω

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{pp} -0.5 V to V_{pp} + 0.5 V

Outputs, V_{o} -0.5V to V_{doo} + 0.5V

Package Thermal Impedance, θ 112.7°C/W (0 Ifpm)

Storage Temperature, $T_{s_{TR}}$ -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Power Supply Voltage		3.135	3.3	3.465	V
 DD	Power Supply Current				18	mA
I _{DDO}	Output Supply Current				11	mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDD} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				18	mA
I _{DDO}	Output Supply Current				11	mA

Table 3C. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DDD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		2		V _{DD} + 0.3	V
V	Input Low Voltage		-0.3		1.3	V
I	Input High Current	$V_{_{DD}} = V_{_{IN}} = 3.465V$			150	μΑ
I _L	Input Low Current	$V_{DD} = 3.465 \text{V}, V_{IN} = 0 \text{V}$	-5			μΑ
		Refer to NOTE 1	2.6			V
V _{OH}	Output High Voltage	I _{OH} = -16mA	2.9			V
		I _{OH} = -100uA	3			V
		Refer to NOTE 1			0.5	V
V _{oL}	Output Low Voltage	I _{oL} = 16mA			0.25	V
		I _{oL} = 100uA			0.15	V

NOTE 1: Outputs terminated with 50Ω to V_{nno}/2. See Parameter Measurement Section, "3.3V Output Load Test Circuit".

Table 3D. LVCMOS / LVTTL DC Characteristics, $V_{_{DD}} = 3.3V \pm 5\%$, $V_{_{DDO}} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		2		V _{DD} + 0.3	V
V	Input Low Voltage		-0.3		1.3	V
I _{IH}	Input High Current	$V_{_{DD}} = V_{_{IN}} = 3.465V$			150	μΑ
I	Input Low Current	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ
V _{OH}	Output High Voltage; NOTE 1		2.1			V
V _{OL}	Output Low Voltage; NOTE 1				0.5	V

NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Section, "3.3V/2.5V Output Load Test Circuit".

Table 4A. AC Characteristics, $V_{DD} = V_{DDD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				166	MHz
tp_LH	Propagation Delay, Low-to-High; NOTE 1	<i>f</i> ≤ 166MHz	2		3.3	ns
tjit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	125MHz, Integration Range 12kHz – 20MHz		0.17		ps
tsk(o)	Output Skew; NOTE 2, 4	f = 133MHz			50	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				600	ps
t	Output Rise Time	30% to 70%	250		500	ps
t _F	Output Fall Time	30% to 70%	250		500	ps
odc	Output Duty Cycle		40		60	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at 166MHz unless noted otherwise.

NOTE 1: Measured from $V_{_{DD}}/2$ of the input to $V_{_{DD}}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at V_{DDO}/2.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Table 4B. AC Characteristics, $V_{dd} = 3.3V \pm 5\%$, $V_{dd0} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				166	MHz
tp_LH	Propagation Delay, Low-to-High; NOTE 1	<i>f</i> ≤ 166MHz	2.3		3.7	ns
tsk(o)	Output Skew; NOTE 2, 4	f = 133MHz			60	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				650	ps
t _R	Output Rise Time	30% to 70%	250		500	ps
t	Output Fall Time	30% to 70%	250		500	ps
odc	Output Duty Cycle		40		60	%

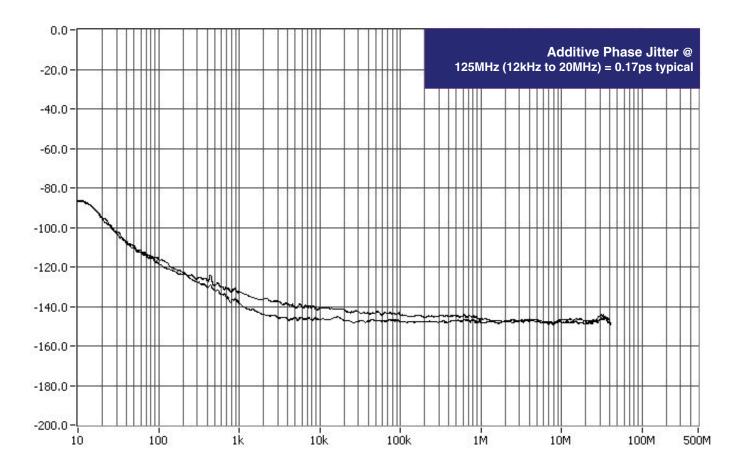
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at 166MHz unless noted otherwise.

NOTE 1: Measured from $V_{pp}/2$ of the input to $V_{pp}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at V_{DDO}/2.

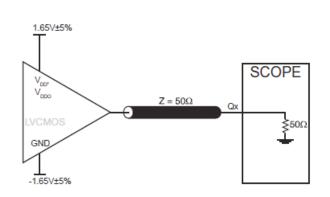
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured

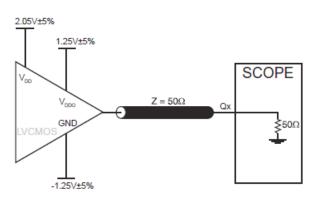

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

ADDITIVE PHASE JITTER

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels

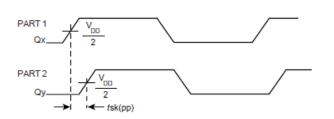
(dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.



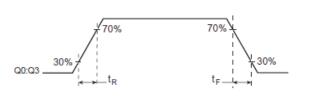

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device.

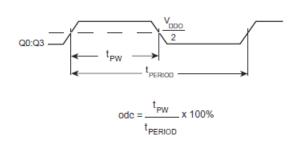
This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

PARAMETER MEASUREMENT INFORMATION

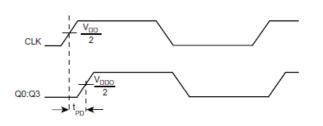


3.3V OUTPUT LOAD AC TEST CIRCUIT


2.5V OUTPUT LOAD AC TEST CIRCUIT



OUTPUT SKEW


PART-TO-PART SKEW

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

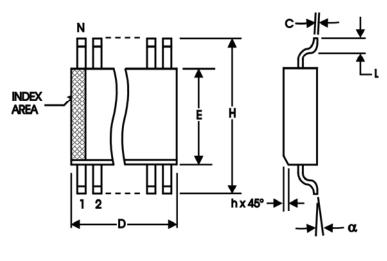
PROPAGATION DELAY

RELIABILITY INFORMATION

Table 5. $\theta_{_{JA}} \text{vs. A} \text{ir Flow Table}$

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	153.3°C/W	128.5°C/W	115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	112.7°C/W	103.3°C/W	97.1°C/W


NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 8304l is: 416

PACKAGE OUTLINE AND DIMENSIONS

PACKAGE OUTLINE - SUFFIX M FOR 8 LEAD SOIC

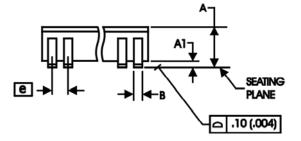


TABLE 6. PACKAGE DIMENSIONS - SUFFIX M

OVMPOL	Millin	neters
SYMBOL	MINIMUN	MAXIMUM
N	8	3
А	1.35	1.75
A1	0.10	0.25
В	0.33	0.51
С	0.19	0.25
D	4.80	5.00
E	3.80	4.00
е	1.27 E	BASIC
Н	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

TABLE 7. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8304AMILF	8304AMIL	8 lead "Lead Free" SOIC	Tube	-40°C to +85°C
8304AMILFT	8304AMIL	8 lead "Lead Free" SOIC	Tape and Reel	-40°C to +85°C

	REVISION HISTORY SHEET									
Rev	Table	Page	Description of Change	Date						
В	3B	3	LVCMOS/LVTTL DC Characteristics Table, added I and I Test Conditions to V and V rows.	4/4/02						
В	Т7	1 8	Features Section - added lead-free bullet. Ordering Information Table - added lead-free part number, marking and note. Updated datasheet format.	11/09/06						
С	T4A T7	4 6 9	3.3V AC Characteristics Table - added Buffer Additive Phase Jitter spec. Added Buffer Additive Phase Jitter Plot. Ordering Information - Deleted "ICS" from the Part/Order number column.	2/11/09						
D	T1 T2	1 2 2	Pin Assignment - corrected "pullup" label to "pulldown" label. Pin Description Table - deleted pullup from note. Pin Characteristics Table - deleted Rpullup row.	10/29/10						
D	Т7	9	Removed ICS in the part numbers. Removed LF note at the bottom of the Ordering Information table. Removed the quantity of 2500 from the Tape & Reel in the Ordering information table. Updated datasheet header and footer.	12/10/15						

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/