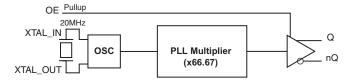


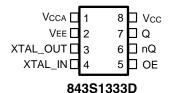
General Description

The 843S1333D is a high frequency clock generator. The 843S1333D uses an external 20MHz crystal to synthesize 1333.33MHz. The 843S1333D has excellent cycle-to-cycle and RMS period jitter performance.

The 843S1333D operates at 3.3V operating supply and is available in a fully RoHS compliant 8-lead TSSOP package.


Features

- One differential LVPECL output
- Crystal oscillator interface designed for 18pF, 20MHz parallel resonant crystal
- Cycle-to-Cycle Jitter: 14ps (maximum)
- Period Jitter, RMS: 2.6ps (maximum)
- Output Duty Cycle: 48 52%
- Full 3.3V supply mode
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package


Table 1. Frequency Table

Crystal Frequency (MHz)	Multiplier Value	Output Frequency (MHz)		
20	66.67	1333.33		

Block Diagram

Pin Assignment

8 Lead TSSOP
4.40mm x 3.0mm x 0.925mm package body
G Package
Top View

Table 2. Pin Descriptions

Number	Name	T	уре	Description
1	V _{CCA}	Power		Analog supply pin.
2	V _{EE}	Power		Negative supply pin.
3, 4	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output. External tuning capacitor must be used for proper operation.
5	OE	Input	Pullup	Synchronous output enable. When logic HIGH, the outputs are enabled and active. When logic LOW, Q output is forced LOW and nQ output is forced HIGH. LVCMOS/LVTTL interface levels.
6, 7	nQ, Q	Output		Differential output pair. LVPECL interface levels.
8	V _{CC}	Power		Core supply pin.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 3. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			2		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I XTAL_IN Other Inputs	0V to V _{CC} -0.5V to V _{CC} + 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA}	115.2°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		V _{CC} - 0.23	3.3	V _{CC}	V
I _{EE}	Power Supply Current				80	mA
I _{CCA}	Analog Supply Current				23	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage		-0.3		0.8	V
I _{IH}	Input High Current	$V_{CC} = V_{IN} = 3.465V$			10	μΑ
I _{IL}	Input Low Current	$V_{CC} = 3.465V, V_{IN} = 0V$	-150			μΑ

Table 4C. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%, \ V_{EE} = 0V, \ T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.3		V _{CC} - 0.8	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} - 2.0		V _{CC} – 1.6	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs termination with 50Ω to $\mbox{V}_{\mbox{CC}}$ – 2V.

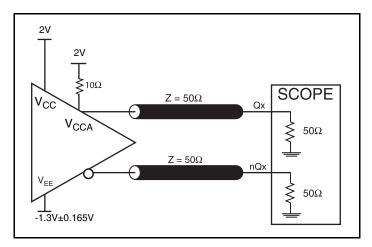
Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamenta	ıl	
Frequency			20		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

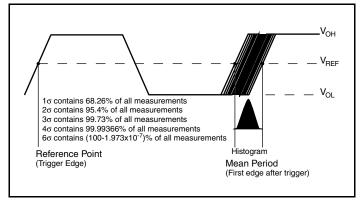
AC Electrical Characteristics

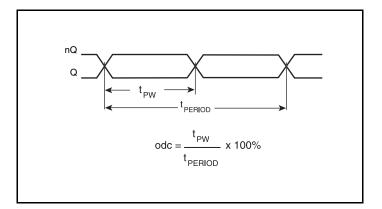
Table 6. AC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0$ °C to 70°C

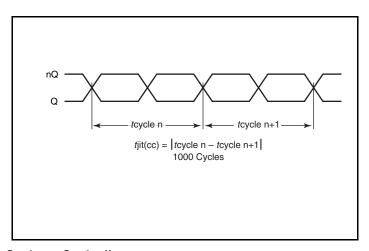
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency			1333.33		MHz
tjit(cc)	Cycle-to-Cycle Jitter; NOTE 1				14	ps
tjit(per)	Period Jitter, RMS; NOTE 1				2.6	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	80		200	ps
odc	Output Duty Cycle		48		52	%

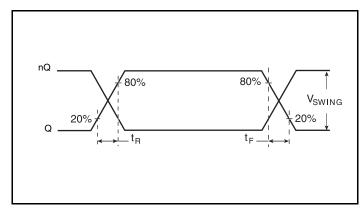

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: External tuning capacitor must be used for proper operation.


NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit


RMS Period Jitter

Output Duty Cycle/Pulse Width/Period

Cycle-to-Cycle Jitter

Output Rise/Fall Time

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 843S1333D provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_{CC} pin and also shows that V_{CCA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{CCA} pin.

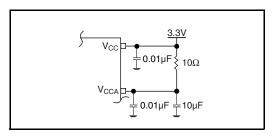


Figure 1. Power Supply Filtering

Crystal Input Interface

The 843S1333D has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 20MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts. External tuning capacitor must be used for proper operation.

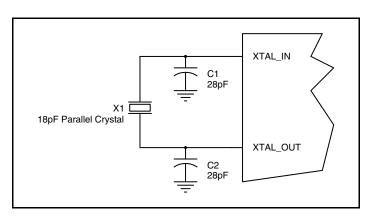


Figure 2. Crystal Input Interface

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition,

matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

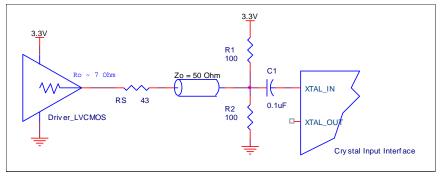


Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

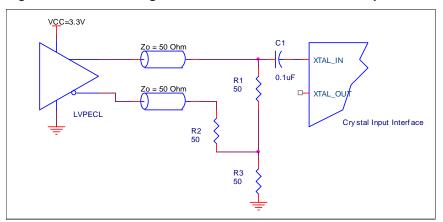


Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

 $Z_{o} = 50\Omega$ $Z_{o} = 50\Omega$ $R1 = \frac{1}{((V_{OH} + V_{OL}) / (V_{CC} - 2)) - 2} * Z_{o}$ $RTT = \frac{1}{((V_{OH} + V_{OL}) / (V_{CC} - 2)) - 2} * Z_{o}$ $RTT = \frac{1}{((V_{OH} + V_{OL}) / (V_{CC} - 2)) - 2} * Z_{o}$

Figure 4A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

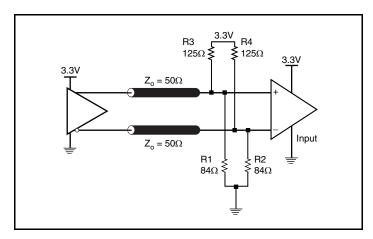


Figure 4B. 3.3V LVPECL Output Termination

Schematic Example

Figure 5 shows an example of the ICS843S133D application schematic. In this example, the device is operated at $V_{CC} = 3.3V$. The 18pF parallel resonant 20MHz crystal is used. The C1 and C2 = 28pF are recommended for frequency accuracy. For different board layout,

the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. Two examples of LVPECL termination are shown in this schematic. Additional termination approaches are shown in the LVPECL Termination Application Note.

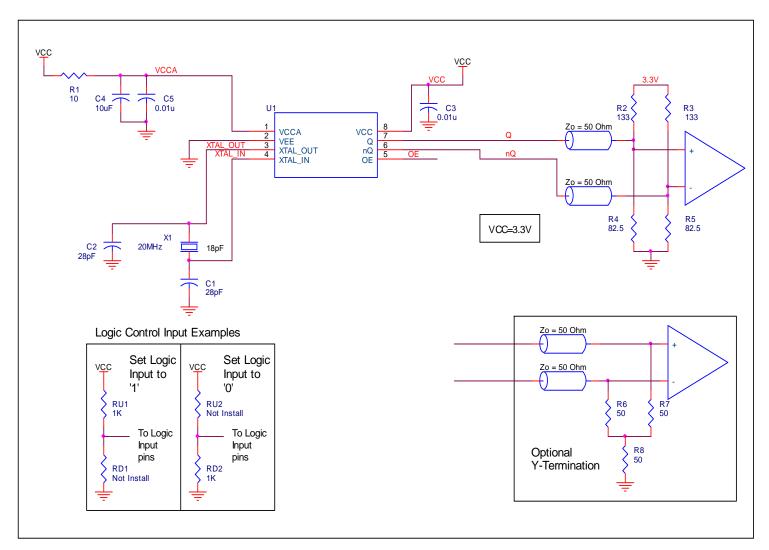


Figure 5. 843S1333D Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the 843S1333D. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 843S1333D is the sum of the core power plus the power dissipated in the load(s).

The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

The maximum current at 70°C is as follows: I_{DD MAX} = 77.68mA

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 77.68mA = 269.16mW
- Power (outputs)_{MAX} = 32mW/Loaded Output pair

Total Power_MAX (3.3V, with all outputs switching) = 269.16mW + 32mW = 301.16mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 115.2°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}\text{C} + 0.301\text{W} * 115.2^{\circ}\text{C/W} = 104.7^{\circ}\text{C}$. This is well below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	115.2°C/W	110.9°C/W	108.8°C/W

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 6.

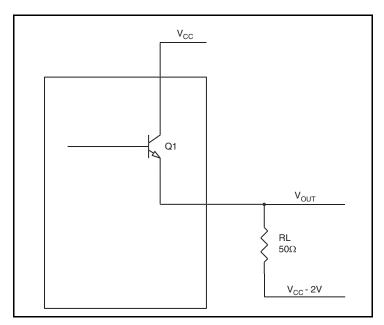


Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.8V$ $(V_{CC_MAX} V_{OH_MAX}) = 0.8V$
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.6V$ $(V_{CC_MAX} V_{OL_MAX}) = 1.6V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

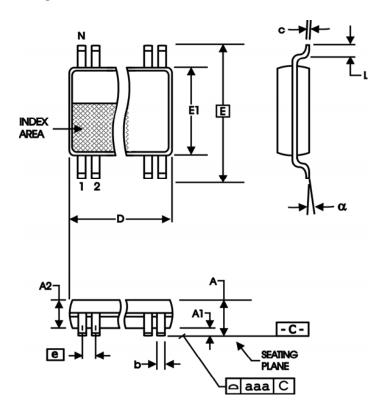
$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.8V)/50\Omega] * 0.8V = \textbf{19.2mW}$$

$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.6V)/50\Omega] * 1.6V = \textbf{12.8mW}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW

Reliability Information

Table 8. $\theta_{\mbox{\scriptsize JA}}$ vs. Air Flow Table for a 8 Lead TSSOP


θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	115.2°C/W	110.9°C/W	108.8°C/W

Transistor Count

The transistor count for 843S1333D is: 1023

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 9. Package Dimensions

All Dim	ensions in Mi	llimeters	
Symbol	Minimum	Maximum	
N		3	
Α	1.20		
A 1	0.5	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	2.90	3.10	
Е	6.40	Basic	
E1	4.30	4.50	
е	0.65	Basic	
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843S1333DGLF	33DL	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
843S1333DGLFT	33DL	"Lead-Free" 8 Lead TSSOP	Tape & Reel	0°C to 70°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
Α			Updated data sheet format.	12/2/15

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners.

For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.

Copyright ©2015 Integrated Device Technology, Inc. All rights reserved.