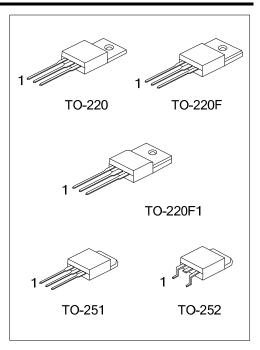
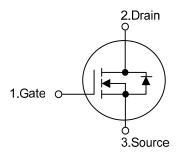
UNISONIC TECHNOLOGIES CO., LTD

9-08MM8 Power MOSFET

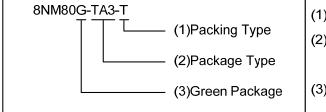

8.0A, 800V N-CHANNEL SUPER-JUNCTION MOSFET

DESCRIPTION


The UTC 8NM80-Q is a Super Junction MOSFET Structure and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and a high rugged avalanche characteristics. This power MOSFET is usually used at AC-DC converters for power applications.

FEATURES

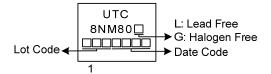
- * $R_{DS(ON)} \le 0.75 \Omega$ @ $V_{GS}=10V$, $I_{D}=4.0A$
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Dealcana	Pin Assignment			Da aldia a
Lead Free	Halogen Free	Package	1 2 3		Packing	
8NM80L-TA3-T	8NM80G-TA3-T	TO-220	G	D	S	Tube
8NM80L-TF1-T	8NM80G-TF1-T	TO-220F1	G	D	S	Tube
8NM80L-TF3-T	8NM80G-TF3-T	TO-220F	G	D	S	Tube
8NM80L-TM3-T	8NM80G-TM3-T	TO-251	G	D	S	Tube
8NM80L-TN3-R	8NM80G-TN3-R	TO-252	G	D	S	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source


- (1) T: Tube, R: Tape Reel
- (2) TA3: TO-220, TF1: TO-220F1, TF3: TO-220F,

TM3: TO-251, TN3:TO-252

(3) G: Halogen Free and Lead Free, L: Lead Free

www.unisonic.com.tw 1 of 9 8NM80-Q

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V_{DSS}	800	V
Gate-Source Voltage			V_{GSS}	±30	V
	Continuous	T _C = 25°C	I _D	8	Α
Continuous Drain Current		T _C =100°C		5.2	Α
Pulsed Drain Current	Pulsed (Note 2)		I_{DM}	24	Α
Single Pulsed Avalanche Energy Single Pulsed (Note 3)		Eas	313	mJ	
Peak Diode Recovery dv/dt (Note 4)			dv/dt	2.7	V/ns
	TO-220		P _D	62	W
Power Dissipation	TO-220F/TO-220F1			27	W
	TO-251/TO-252			32	W
Junction Temperature			T_J	+150	°C
Storage Temperature			T_{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

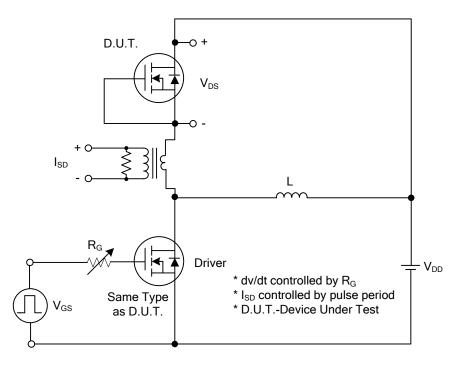
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 100mH, I_{AS} = 2.5A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C.
- 4. I_{SD} \leq 8.0A, di/dt \leq 200A/ μ s, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C.

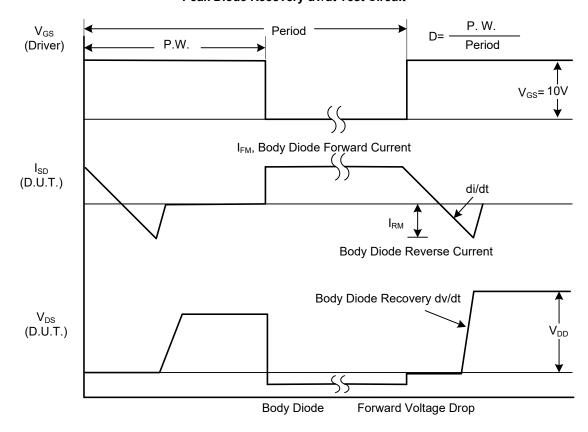
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-220F TO-220F1	θја	62.5	°C/W
	TO-251/TO-252		110	°C/W
Junction to Case	TO-220		2.01	°C/W
	TO-220F/TO-220F1	θЈС	4.63	°C/W
	TO-251/TO-252		3.9 (Note)	°C/W

Note: Device mounted on FR-4 substrate P_{C} board, 2oz copper, with 1inch square copper plate.

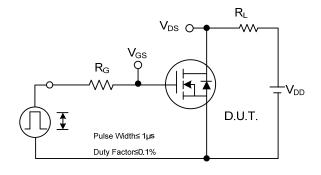

■ ELECTRICAL CHARACTERISTICS (TJ =25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_DSS	V_{GS} =0V, I_D =250 μ A	800			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =800V, V _{GS} =0V			10	μΑ
Gate-Source Leakage Current	Forward	laaa	V_{GS} =30V, V_{DS} =0V			100	nA
	Reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.5		4.5	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =4.0A			0.75	Ω
DYNAMIC CHARACTERISTIC	S						
Input Capacitance	nput Capacitance				751		рF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =50V, f=1.0MHz		106		pF
Reverse Transfer Capacitance		C_{RSS}			3.3		рF
SWITCHING CHARACTERIST	ICS				ā.		
Total Gate Charge (Note 1)		Q_{G}	V 040V V 40V I 0.0A		31.5		nC
Gate to Source Charge		Q_GS	V _{DS} =640V, V _{GS} =10V, I _D =8.0A (Note 1, 2)		9		nC
Gate to Drain Charge		Q_GD	(Note 1, 2)		9		nC
Turn-ON Delay Time (Note 1)		t _{D(ON)}	1001/1/ 101/		12		nS
Rise Time		t_R	V _{DS} =100V, V _{GS} =10V,		23		nS
Turn-OFF Delay Time		t _{D(OFF)}	I _D =8.0A, R _G =25Ω		90		nS
Fall-Time		t _F	(Note 1, 2)		46		nS
SOURCE- DRAIN DIODE RAT	INGS AND CHA	ARACTERIS	TICS		ā.		
Maximum Continuous Drain-So	urce Diode	,				8	Α
Forward Current		Is				0	А
Maximum Pulsed Drain-Source Diode		Ism				24	Α
Forward Current						24	А
Drain-Source Diode Forward Voltage (Note 1)		V _{SD}	I _S =8.0A, V _{GS} =0V			1.4	V
Body Diode Reverse Recovery Time (Note 1)		t _{rr}	I _S =8.0A, V _{GS} =0V,		370		nS
Body Diode Reverse Recovery Charge		Q_{rr}	dl _F /dt=100A/µs		10.5		μC


Notes: 1. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%.

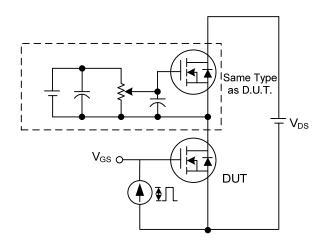
^{2.} Essentially independent of operating ambient temperature.

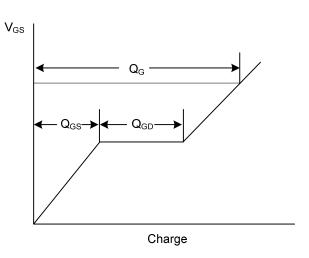
■ TEST CIRCUITS AND WAVEFORMS


Peak Diode Recovery dv/dt Test Circuit

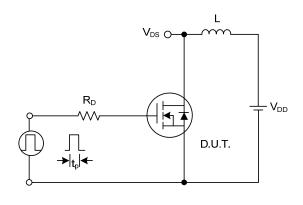
Peak Diode Recovery dv/dt Waveforms

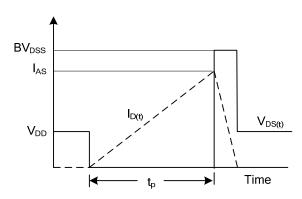
8NM80-Q Power MOSFET


■ TEST CIRCUITS AND WAVEFORMS



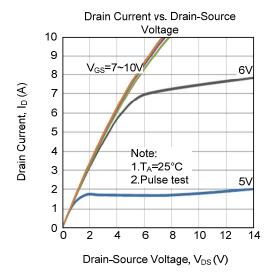
Switching Test Circuit

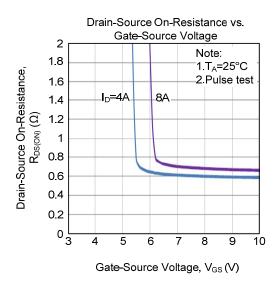

Switching Waveforms

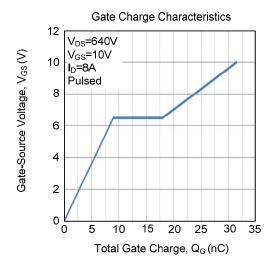


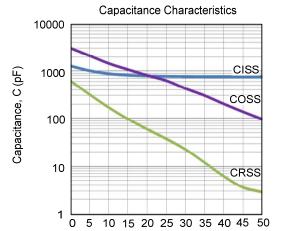
Gate Charge Test Circuit

Gate Charge Waveform

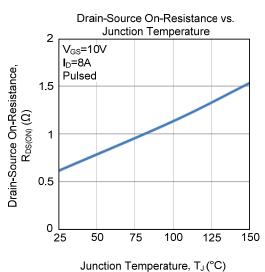


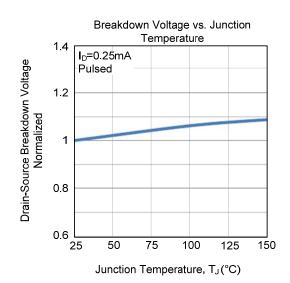


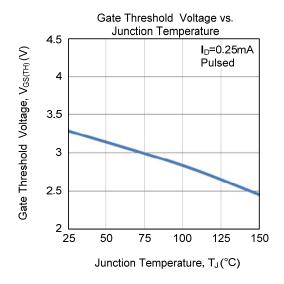

Unclamped Inductive Switching Test Circuit

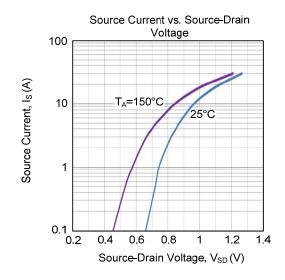

Unclamped Inductive Switching Waveforms

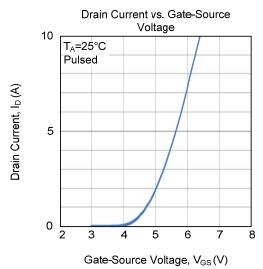
■ TYPICAL CHARACTERISTICS

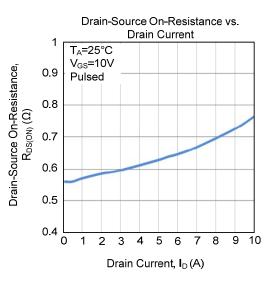


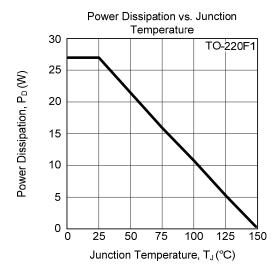


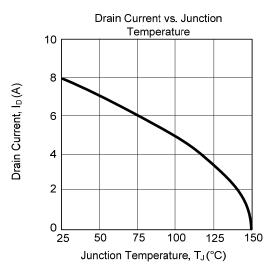


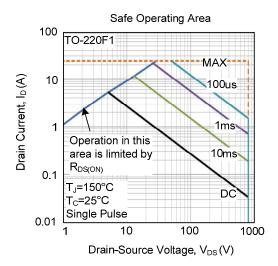

Drain-Source Voltage, V_{DS}(V)

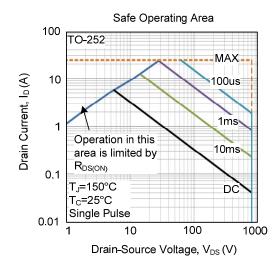





■ TYPICAL CHARACTERISTICS (Cont.)







■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.