

Four Output Differential Buffer for PCI Express

9DB401C

Description

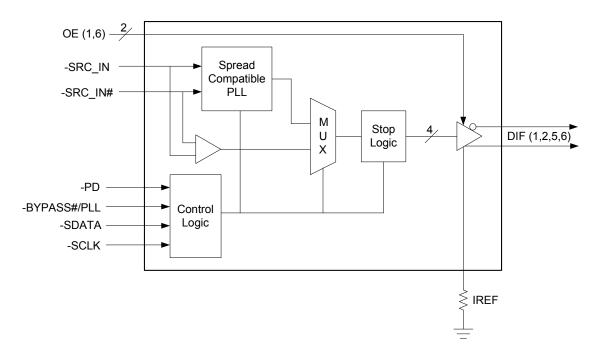
The 9DB401C is a DB400 Version 2.0 Yellow Cover part with PCI Express support. It can be used in PC or embedded systems to provide outputs that have low cycle-to-cycle jitter (50ps), low output-to-output skew (100ps), and are PCI Express gen 1 compliant. The 9DB401C supports a 1 to 4 output configuration, taking a spread or non spread differential HCSL input from a CK410(B) main clock such as 954101 and 932S401, or any other differential HCSL pair. 9DB401C can generate HCSL or LVDS outputs from 50 to 200MHz in PLL mode or 0 to 400Mhz in bypass mode. There are two de-jittering modes available selectable through the HIGH_BW# input pin, high bandwidth mode provides de-jittering for spread inputs and low bandwidth mode provides extra de-jittering for non-spread inputs. The SRC_STOP#, PD#, and OE real-time input pins provide completely programmable power management control.

Output Features

- 4 0.7V HCSL or LVDS differential output pairs
- Supports zero delay buffer mode and fanout mode
- Bandwidth programming available

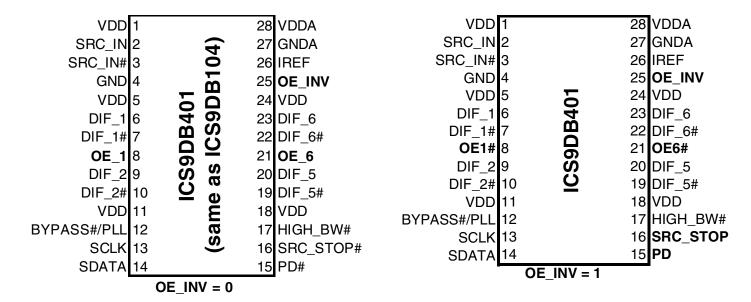
Features/Benefits

- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management.


Key Specifications

- Outputs cycle-cycle jitter: < 50ps
- Outputs skew: < 50ps
- Extended frequency range in bypass mode:

Revision B: up to 333.33MHz Revision C: up to 400MHz


- Real-time PLL lock detect output pin
- 28-pin SSOP/TSSOP package
- Available in RoHS compliant packaging

Functional Block Diagram

Note: Polarities shown for OE_INV = 0.

Pin Configuration

28-pin SSOP & TSSOP

Polarity Inversion Pin List Table

	OE_INV					
Pins	0	1				
8	OE_1	OE1#				
15	PD#	PD				
16	DIF_STOP#	DIF_STOP				
21	OE_6	OE6#				

Power Groups

Pin N	lumber	Deceriation
VDD	GND	Description
1	4	SRC_IN/SRC_IN#
5,11,18, 24	4	DIF(1,2,5,6)
N/A	27	IREF
28	27	Analog VDD & GND for PLL core

Pin Description for OE_INV = 0

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential complement clock output
8	OE_1	IN	Active high input for enabling output 1.
0	OE_1	IIN	0 = tri-state outputs, 1= enable outputs
9	DIF_2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode
12	DTPASS#/PLL	IIN	0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
			Asynchronous active low input pin used to power down the device.
15	PD#	IN	The internal clocks are disabled and the VCO and the crystal are
			stopped.
16	SRC_STOP#	IN	Active low input to stop SRC outputs.
17	HIGH_BW#	IN	3.3V input for selecting PLL Band Width
17	nign_bvv#	IIN	0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential complement clock output
20	DIF_5	OUT	0.7V differential true clock output
21	OE_6	IN	Active high input for enabling output 6.
		IIN	0 = tri-state outputs, 1= enable outputs
22	DIF_6#	OUT	0.7V differential complement clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	OE_INV	IN	This latched input selects the polarity of the OE pins.
23	OL_IIV	IIN	0 = OE pins active high, 1 = OE pins active low (OE#)
			This pin establishes the reference current for the differential current-
26	IREF	OUT	mode output pairs. This pin requires a fixed precision resistor tied
20		001	to ground in order to establish the appropriate current. 475 ohms is
			the standard value.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Pin Description for OE_INV = 1

PIN#	PIN NAME	PIN TYPE	DESCRIPTION		
1	VDD	PWR	Power supply, nominal 3.3V		
2	SRC_IN	IN	0.7 V Differential SRC TRUE input		
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input		
4	GND	PWR	Ground pin.		
5	VDD	PWR	Power supply, nominal 3.3V		
6	DIF_1	OUT	0.7V differential true clock output		
7	DIF_1#	OUT	0.7V differential complement clock output		
0	051#	IN	Active low input for enabling DIF pair 1.		
8	OE1#	IIN	1 = tri-state outputs, 0 = enable outputs		
9	DIF_2	OUT	0.7V differential true clock output		
10	DIF_2#	OUT	0.7V differential complement clock output		
11	VDD	PWR	Power supply, nominal 3.3V		
10	DVDACC#/DLI	INI	Input to select Bypass(fan-out) or PLL (ZDB) mode		
12	BYPASS#/PLL	IN	0 = Bypass mode, 1= PLL mode		
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.		
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.		
15	PD	IN	Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped.		
16	SRC_STOP	IN	Active high input to stop SRC outputs.		
17	HIGH_BW#	IN	3.3V input for selecting PLL Band Width		
17			0 = High, 1= Low		
18	VDD	PWR	Power supply, nominal 3.3V		
19	DIF_5#	OUT	0.7V differential complement clock output		
20	DIF_5	OUT	0.7V differential true clock output		
21	OE6#	IN	Active low input for enabling DIF pair 6.		
			1 = tri-state outputs, 0 = enable outputs		
22	DIF_6#	OUT	0.7V differential complement clock output		
23	DIF_6	OUT	0.7V differential true clock output		
24	VDD	PWR	Power supply, nominal 3.3V		
25	OE_INV	IN	This latched input selects the polarity of the OE pins.		
			0 = OE pins active high, 1 = OE pins active low (OE#)		
			This pin establishes the reference current for the differential		
26	IREF	OUT	current-mode output pairs. This pin requires a fixed precision		
-			resistor tied to ground in order to establish the appropriate		
			current. 475 ohms is the standard value.		
27	GNDA	PWR	Ground pin for the PLL core.		
28	VDDA	PWR	3.3V power for the PLL core.		

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		٧
V _{IH}	Input High Voltage		V _{DD} +0.5V	V
Ts	Storage Temperature	-65	150	٦°
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	Ô
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters $T_A = 0$ - 70°C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V_{IL}	3.3 V +/-5% GND - 0.3			0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
land Law Company	I _{IL1}	$V_{IN} = 0 \text{ V}$; Inputs with no pull- up resistors	-5			uA	
Input Low Current	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	
Operating Cumply Current	I _{DD3.3PLL}	Full Active C Full leads		175	200	mA	
Operating Supply Current	I _{DD3.3ByPass}	Full Active, $C_L = Full load;$		160	175	mA	
Powerdown Current	I _{DD3.3PD}	all diff pairs driven			40	mA	
1 OWEIGOWII CUITEIIL	1DD3.3PD	all differential pairs tri-stated			4	mA	
Input Frequency	F _{iPLL}	PLL Mode	50		200	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision B/REV ID = 1H)	0		333.33	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision C/REV ID = 2H)	0		400	MHz	
Pin Inductance ¹	L _{pin}	,			7	nΗ	1
1	C _{IN}	Logic Inputs	1.5		4	pF	1
Input Capacitance ¹	C _{OUT}	Output pin capacitance			4	pF	1
DIL D. I . W		PLL Bandwidth when PLL_BW=0	2.4	3	3.4	MHz	1
PLL Bandwidth	BW	PLL Bandwidth when PLL_BW=1	0.7	1	1.4	MHz	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock		0.5	1	ms	1,2
Modulation Frequency	fMOD	Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#		DIF output enable after SRC_Stop# de-assertion		10	15	ns	1,3
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1,3
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
Trise		Rise time of PD# and SRC_STOP#			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

Electrical Characteristics - Clock Input Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V } +/-5\%$

PARAMETER	SYMBOL CONDITIONS		MIN	MAX	UNITS	NOTES
Differential Input High Voltage	V _{IHDIF}	Differential inputs (single-ended measurement)	600	1150	mV	1
Differential Input Low Voltage	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	300	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45	55	%	1
Input SRC Jitter - Cycle to Cycle	SRCJ _{C2CIn}	Differential Measurement		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

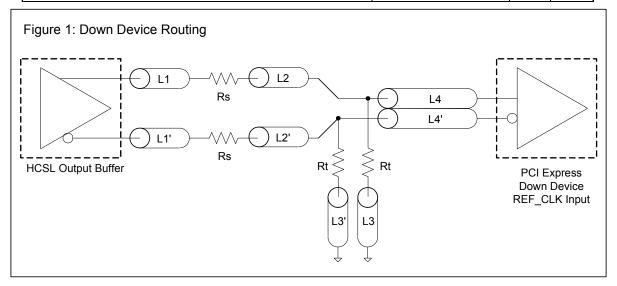
Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V} + /-5\%$; $C_L = 2pF$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $I_{REF} = 475\Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	IIIV	1,3
Max Voltage	Vovs	Measurement on single ended			1150	ma\/	1
Min Voltage	Vuds	signal using absolute value.	-300			mV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	$V_T = 50\%$			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom			50	ps	1
		BYPASS mode as additive jitter			50	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

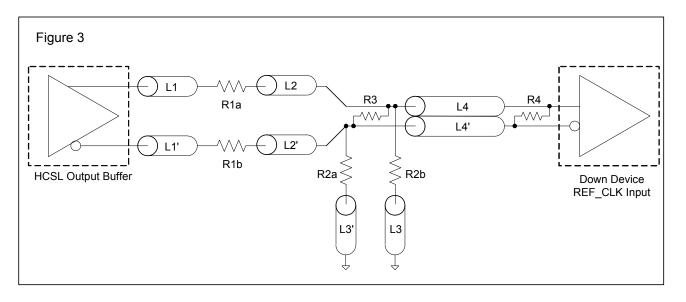
²Slew rate measured through Vswing centered around differential zero

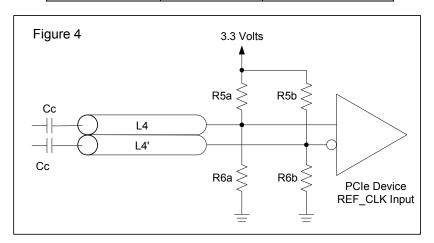

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements

 $^{^{3}}I_{REF} = V_{DD}/(3xR_{B})$. For $R_{B} = 475\Omega$ (1%), $I_{REF} = 2.32$ mA. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7$ V @ $Z_{O} = 50\Omega$.

SRC Reference Clock						
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure			
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1			
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
Rs	33	ohm	1			
Rt	49.9	ohm	1			

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note	
0.45v	0.22v	1.08	33	150	100	100		
0.58	0.28	0.6	33	78.7	137	100		
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible	
0.60	0.3	1.2	33	174	140	100	Standard LVDS	

R1a = R1b = R1 R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)						
Component	Value	Note				
R5a, R5b	8.2K 5%					
R6a, R6b	1K 5%					
Cc	0.1 μF					
Vcm	0.350 volts					

General SMBus serial interface information for the 9DB401C

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (h)
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock will *acknowledge*
- Controller (host) starts sending Byte N through Byte N + X -1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address DC_(b)
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will *acknowledge*
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (h)
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N + X -1
- IDT clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block W	e Operation	
Cor	ntroller (Host)	IDT (Slave/Receiver)	
Т	starT bit		
Slav	e Address DC _(h)		
WR	WRite		
			ACK
Begi	nning Byte = N		
		ACK	
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
			ACK
	\Q	te	
	\Q	X Byte	\Q
	\Q	×	\Q
			\Q
Byt	e N + X - 1		
			ACK
Р	stoP bit		

Ind	Index Block Read Operation							
	troller (Host)	ID	T (Slave/Receiver)					
Т	starT bit							
Slave	Address DC _(h)							
WR	WRite							
			ACK					
Begii	nning Byte = N							
			ACK					
RT	Repeat starT							
Slave	Address DD _(h)							
RD	ReaD							
		ACK						
		Data Byte Count = X						
	ACK							
			Beginning Byte N					
	ACK							
		X Byte	\Q					
	\Q	В	\Q					
	♦	×	♦					
<u> </u>								
			Byte N + X - 1					
N	Not acknowledge							
Р	stoP bit							

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

			,					
Byt	te 0	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		-	PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6		-	STOP_Mode	SRC_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5		-	PD_SRC_INV	Power Down and SRC Invert	RW	Normal	Invert	0
Bit 4			Reserved	Reserved	RW	Res	erved	Χ
Bit 3			Reserved	Reserved	RW	Res	erved	Χ
Bit 2			PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1			BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0		-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Output Control Register

Byt	e 1	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Res	erved	Χ
Bit 6	22	,23	DIF_6	Output Control	RW	Disable	Enable	1
Bit 5	19	,20	DIF_5	Output Control	RW	Disable	Enable	1
Bit 4		-	Reserved	Reserved	RW	Res	erved	Χ
Bit 3		-	Reserved	Reserved	RW	Res	erved	Χ
Bit 2	9,	10	DIF_2	Output Control	RW	Disable	Enable	1
Bit 1	6	,7	DIF_1	Output Control	RW	Disable	Enable	1
Bit 0		-	Reserved	Reserved	RW	Res	erved	X

SMBus Table: Output Control Register

Byt	te 2	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7			Reserved	Reserved	RW	Res	erved	Χ
Bit 6	22	2,23	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	19	9,20	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4		-	Reserved	Reserved	RW	Res	erved	Χ
Bit 3		-	Reserved	Reserved	RW	Res	erved	Χ
Bit 2	9,	,10	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	6	6,7	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0		-	Reserved	Reserved	RW	Res	erved	Χ

SMBus Table: Output Control Register

Byl	te 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			Reserved		RW	Reserved		X
Bit 6				Reserved	RW	RW Reserved		Х
Bit 5				Reserved	RW	Reserved		Х
Bit 4				Reserved	RW	Res	erved	Х
Bit 3			Reserved		RW	Reserved		Х
Bit 2	Bit 2			Reserved	RW	Res	erved	Х
Bit 1				Reserved	RW	Res	erved	Х
Bit 0				Reserved	RW	Res	erved	X

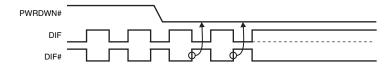
SMBus Table: Vendor & Revision ID Register

Byte	4 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	RID3	REVISION ID	R	-	-	Χ
Bit 6	-	RID2		R	-	-	Χ
Bit 5	-	RID1		R	-	-	Х
Bit 4	-	RID0		R	-	-	Х
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDORID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: DEVICE ID

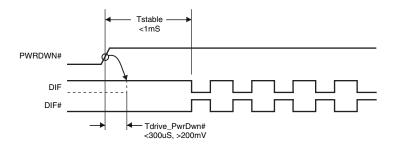
Byte 5	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	7 - Device ID 7		ice ID 7 (MSB)	RW	Reserved		0
Bit 6	- Device ID 6 RW Reserved		served	1			
Bit 5	5 - Device ID 5 RW Reser		served	0			
Bit 4	-	Device ID 4		RW	Reserved		0
Bit 3	-	!	Device ID 3		Reserved		0
Bit 2	-		Device ID 2	RW	Res	served	0
Bit 1	- Dev		Device ID 1	RW	Res	served	0
Bit 0	-		Device ID 0	RW	Res	served	1

SMBus Table: Byte Count Register


Byt	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	BC7		RW	-	-	0
Bit 6		-	BC6		RW	-	-	0
Bit 5		-	BC5	\A/vikin or to their we sint or	RW	-	-	0
Bit 4		-	BC4	Writing to this register configures how many bytes	RW	-	-	0
Bit 3		-	BC3	will be read back.	RW	-	-	0
Bit 2		-	BC2	will be read back.	RW	-	-	1
Bit 1		-	BC1		RW	-	-	1
Bit 0		-	BC0		RW	•	-	1

PD#

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

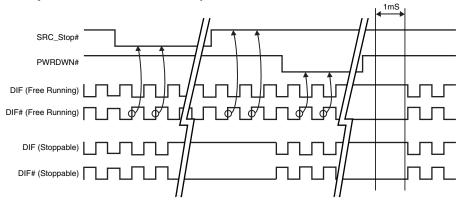
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

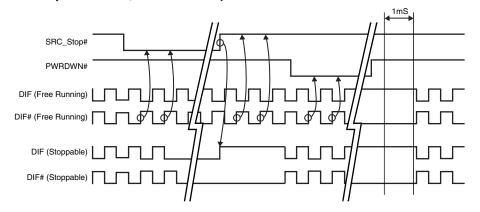
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion.

Note: Polarities in timing diagrams are shown OE_INV = 0. They are similar to OE_INV = 1.

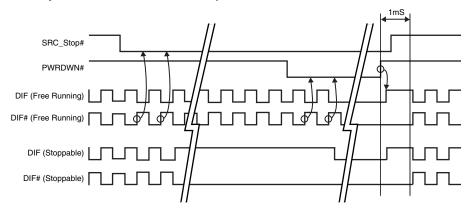
SRC STOP#

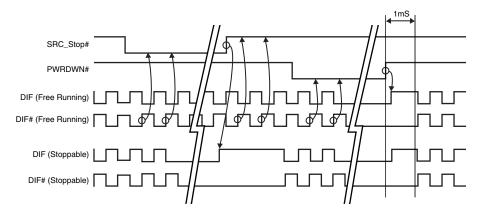

The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

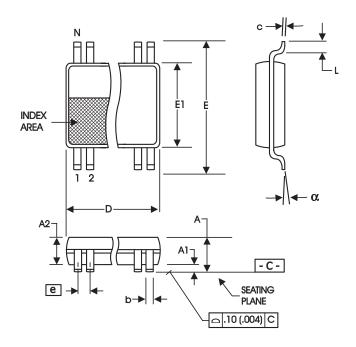
SRC_STOP# - Assertion (transition from '1' to '0')


Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.


SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)

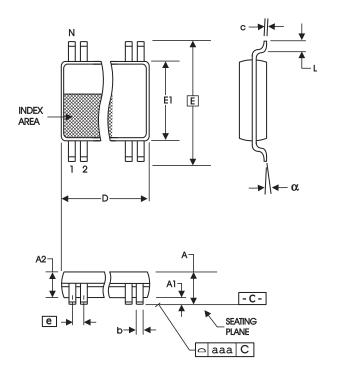

SRC STOP 2 (SRC Stop =Tristate, PD = Driven)



SRC_STOP_3 (**SRC_Stop** = **Driven**, **PD** = **Tristate**)

SRC_STOP_4 (**SRC_Stop = Tristate**, **PD = Tristate**)

209 mil SSOP


203 11111 0001							
	In Mill	imeters	In Inches				
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS				
	MIN	MAX	MIN	MAX			
Α		2.00		.079			
A1	0.05		.002				
A2	1.65 1.85		.065	.073			
b	0.22	0.38	.009	.015			
С	0.09	0.25	.0035	.010			
D	SEE VARIATIONS		SEE VA	RIATIONS			
E	7.40	8.20	.291	.323			
E1	5.00	5.60	.197	.220			
е	0.65	BASIC	0.0256	BASIC			
L	0.55	0.95	.022	.037			
N	SEE VARIATIONS		SEE VARIATIONS				
α	0°	8°	0°	8°			

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

4.40 mm. Body, 0.65 mm. Pitch TSSOP

(173 mil) (25.6 mil)

	In Millimeters		In Inches	
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
Α		1.20	-	.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VARIATIONS		SEE VARIATIONS	
E	6.40 BASIC		0.252 BASIC	
E1	4.30	4.50	.169	.177
е	0.65 BASIC		0.0256 BASIC	
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VARIATIONS	
а	0°	8°	0°	8°
aaa		0.10		.004

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB401CGLF	Tubes	28-pin TSSOP	0 to +70°C
9DB401CGLFT	Tape and Reel	28-pin TSSOP	0 to +70°C
9DB401CFLF	Tubes	28-pin SSOP	0 to +70°C
9DB401CFLFT	Tape and Reel	28-pin SSOP	0 to +70°C

[&]quot;LF" denotes Pb Configuration, RoHS compliant.

[&]quot;C" is the device revision designator (will not correlate to the datasheet revision)

9DB401C Four Output Differential Buffer for PCI Express

Revision History

Rev.	Issue Date	Description	Page #
0.1	4/21/2005	Changed Ordering Information from LN to LF.	14,15
		Updated LF Ordering Information to RoHS Compliant.	14-15
Α	8/15/2005	2. Release to web.	14-15
В	9/7/2006	Updated Electrical Characteristics.	Various
С	5/22/2007	Updated Polarity Inversion Table.	2
D	2/28/2008	Added Input Clock Specs	6
Е	3/18/2008	Fixed typo in clock Input Parameters	6
		1. Updated Electrical Characteristics to add propagation delay and phase	
		noise information.	
		2. Added SMBus electrical characteristics	
		3. Added foot note about DIF input running in order for the SMBus	
		interface to work	
		4. Added foot note to Byte 1 about functionality of OE bits and OE pins.	
F	9/5/2008	5. Updated Block Diagram to correctly indicate the OE pins.	Various
G		Updated Block Diagram	1
Н	1/27/2011	Updated Termination Figure 4	8

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/