

General Description

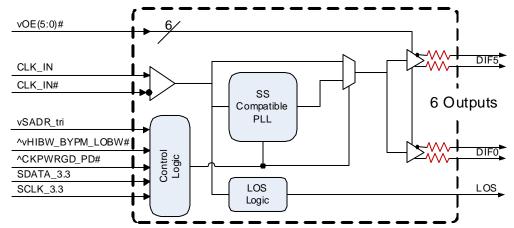
The 9DBL06x3 devices are 3.3V members of IDT's Full-Featured PCIe clock family. They support PCIe Gen1-4 Common Clock (CC) architectures and also support NVLINK applications. The 9DBL06x3 parts have a Loss of Signal (LOS) indicator to support fault-tolerant, high reliability systems.

Recommended Application

PCIe Gen1-4 and NVLINK clock distribution for Riser Cards, Storage, Networking, JBOD, Communications, Access Points

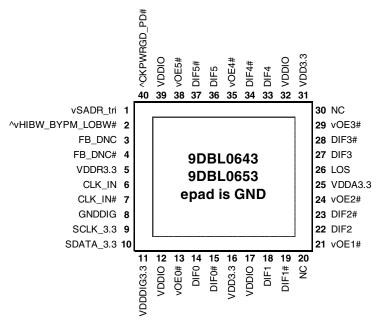
Output Features

- Loss Of Signal (LOS) open drain output
- 6- 1-200 MHz Low-Power (LP) HCSL DIF pairs
 - 9DBL0643 default Zout = 100Ω
 - 9DBL0653 default Zout = 85Ω
- Easy AC-coupling to other logic families, see IDT application note AN-891.


Key Specifications

- PCle Gen1-4 CC compliant in ZDB or fanout buffer mode
- Supports NVLINK at 156.25M in ZDB or fanout buffer mode
- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew < 50ps
- Bypass mode additive phase jitter is 0 ps typical rms for PCle
- Bypass mode additive phase jitter 160fs rms typ. @ 156.25M (1.5M to 10M)

Features/Benefits


- LOS indicator signals loss of input clock; adds fault tolerance, eases system diagnostics
- Direct connection to 100Ω (xx43) or 85Ω (xx53) transmission lines; saves 24 resistors compared to standard PCIe devices
- 169mW typical power consumption (PLL mode@3.3V); eliminates thermal concerns
- VDDIO allows 30% power savings at optional 1.05V; maximum power savings
- OE# pin for each DIF output; support DIF power management
- HCSL-compatible differential input; can be driven by common clock sources
- Spread Spectrum tolerant; allows reduction of EMI
- Outputs blocked until PLL is locked; clean system start-up
- Pin/SMBus selectable PLL bandwidth and PLL Bypass; minimize phase jitter for each application
- Device contains default configuration; SMBus interface not required for device operation
- 3 selectable SMBus addresses; multiple devices can easily share an SMBus segment
- SMBus-selectable features allows optimization to customer requirements:
 - control input polarity
 - control input pull up/downs
 - slew rate for each output
 - differential output amplitude
 - output impedance for each output
- Contact IDT for quick-turn customization of SMBus defaults;
 allows exact optimization to customer requirements
- Space saving 40-pin 5 × 5mm VFQFPN; minimal board space

Block Diagram

Pin Configuration

40-VFQFPN, 5mm x 5mm 0.4mm pin pitch

^ prefix indicates internal 120KOhm pull up resistor ^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2) v prefix indicates internal 120KOhm pull down resistor

Power Management Table

CKPWRGD PD#	CLK_IN	SMBus OEx# Pin		DIF	PLL	
CKFWKGD_FD#	OLK_IN	OEx bit	OEX# FIII	True O/P Comp. O/P		PLL
0	Х	Χ	Χ	Low ¹	Low ¹	Off
1	Running	1	0	Running	Running	On ³
1	Running	1	1	Disabled ¹	Disabled ¹	On ³
1	Running	0	Х	Disabled ¹	Disabled ¹	On ³

- 1. The output state is set by B11[1:0] (Low/Low default)
- 2. Input polarities defined as default values for xx43/xx53 devices.
- 3. If Bypass mode is selected, the PLL will be off, and outputs will be running.

SMBus Address Selection Table

	SADR	Address	+ Read/Write bit
State of SADR on first application of	0	1101011	Х
CKPWRGD PD#	M	1101100	Х
CIN WINGD_FD#	1	1101101	х

Note: If not using CKPWRGD (CKPWRGD tied to VDD3.3), all 3.3V VDD need to transition from 2.1V to 3.135V in $<300\mu sec$.

PLL Operating Mode Table

HiBW_BypM_LoBW#	MODE	Byte1 [7:6] Readback	Byte1 [4:3] Control
0	PLL Lo BW	00	00
M	Bypass	01	01
1	PLL Hi BW	11	11

Power Connections

Pin Number			Description
VDD	VDDIO	GND	Description
5		41	Input receiver analog
11		8	Digital Power
16, 31	12, 17, 32, 39	41	DIF outputs, Logic
25		41	PLL Analog

Pin Descriptions

Pin #	Pin Name	Pin Type	Description
1	vSADR_tri	LATCHED IN	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.
_	^vHIBW_BYPM_LOBW	LATOUEDIN	Tri-level input to select High BW, Bypass or Low BW mode. This pin is biased to VDD/2 (Bypass mode) with
2	#	LATCHED IN	internal pull up/pull down resistors. See PLL Operating Mode Table for Details.
	ED DNO	DNO	True clock of differential feedback. The feedback output and feedback input are connected internally on this pin.
3	FB_DNC	DNC	Do not connect anything to this pin.
4	ED DNO#	DNO	Complement clock of differential feedback. The feedback output and feedback input are connected internally on
4	FB_DNC#	DNC	this pin. Do not connect anything to this pin.
_	VDDD0.0	DMD	3.3V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered
5	VDDR3.3	PWR	appropriately.
6	CLK_IN	IN	True Input for differential reference clock.
7	CLK_IN#	IN	Complementary Input for differential reference clock.
8	GNDDIG	GND	Ground pin for digital circuitry
9	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
10	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
11	VDDDIG3.3	PWR	3.3V digital power (dirty power)
12	VDDIO	PWR	Power supply for differential outputs
			Active low input for enabling output 0. This pin has an internal 120kohm pull-down.
13	vOE0#	IN	1 =disable outputs, 0 = enable outputs
14	DIF0	OUT	Differential true clock output
15	DIF0#	OUT	Differential Complementary clock output
16	VDD3.3	PWR	Power supply, nominal 3.3V
17	VDDIO	PWR	Power supply for differential outputs
18	DIF1	OUT	Differential true clock output
19	DIF1#	OUT	Differential Complementary clock output
20	NC	N/A	No Connection.
20		IN/A	Active low input for enabling output 1. This pin has an internal 120kohm pull-down.
21	vOE1#	IN	1 =disable outputs, 0 = enable outputs
22	DIF2	OUT	Differential true clock output
23	DIF2#	OUT	Differential Complementary clock output
23	DIFZ#	001	Active low input for enabling output 2. This pin has an internal 120kohm pull-down.
24	vOE2#	IN	1 =disable outputs, 0 = enable outputs
25	VDDA3.3	PWR	3.3V power for the PLL core.
23	VDDA3.3		
26	LOS		Output indicating Loss of Input Signal. This pin is an open drain output and requires an external pull up resistor for
		OUT	proper functionality. The pin is normally pulled low and goes high when the input clock is not present
27	DIF3	OUT	Differential true clock output
28	DIF3#	OUT	Differential Complementary clock output
29	vOE3#	IN	Active low input for enabling output 3. This pin has an internal 120kohm pull-down.
			1 =disable outputs, 0 = enable outputs
30	NC	N/A	No Connection.
31	VDD3.3	PWR	Power supply, nominal 3.3V
32	VDDIO	PWR	Power supply for differential outputs
33	DIF4	OUT	Differential true clock output
34	DIF4#	OUT	Differential Complementary clock output
35	vOE4#	IN	Active low input for enabling output 4. This pin has an internal 120kohm pull-down.
			1 =disable outputs, 0 = enable outputs
36	DIF5	OUT	Differential true clock output
37	DIF5#	OUT	Differential Complementary clock output
30	vOE5#	IN	Active low input for enabling output 5. This pin has an internal 120kohm pull-down.
38	V OES#	IIN	1 =disable outputs, 0 = enable outputs
39	VDDIO	PWR	Power supply for differential outputs
40	VCKDMDCD DD#	IAI	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode,
40	^CKPWRGD_PD#	IN	subsequent high assertions exit Power Down Mode. This pin has internal 120kohm pull-up resistor.
41	ePAD	GND	Connect paddle to ground.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBL06x3. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Supply Voltage	VDDx				4.6	V	1,2
Input Voltage	V_{IN}		-0.5		V _{DD} +0.5	V	1,3
Input High Voltage, SMBus	V _{IHSMB}	SMBus clock and data pins			3.9	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2500			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Clock Input Parameters

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Input Crossover Voltage - DIF_IN	VcRoss	Cross Over Voltage	150		900	mV	1
Input Swing - DIF_IN	V _{SWING}	Differential value	300			mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d_{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-SMBus Parameters

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
SMBus Input Low Voltage	V_{ILSMB}	$V_{DDSMB} = 3.3V$			0.8	٧	
SMBus Input High Voltage	V_{IHSMB}	$V_{DDSMB} = 3.3V$	2.1		3.6	٧	
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	٧	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V_{DDSMB}		2.7		3.6	٧	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t FSMB	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f_{SMB}	SMBus operating frequency			500	kHz	2,3

¹ Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 4.6V.

²Slew rate measured through +/-75mV window centered around differential zero

^{2.} The device must be powered up for the SMBus to function.

^{3.} The differential input clock

Electrical Characteristics-Input/Supply/Common Output Parameters - Normal Operating Conditions

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Supply Voltage	VDDx	Supply voltage for core and analog	3.135	3.3	3.465	V	
Output Supply Voltage	VDDIO	Supply voltage for Low Power HCSL Outputs	0.95	1.05-3.3	3.465	V	
Ambient Operating Temperature	T_{AMB}	Industrial range	-40	25	85	°C	
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	$0.75 V_{DDx}$		$V_{DDx} + 0.3$	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except Sivibus	-0.3		0.25 V _{DDx}	V	
Input High Voltage	V_{IHtri}		0.75 V _{DDx}		$V_{DD} + 0.3$	V	
Input Mid Voltage	V_{IMtri}	Single-ended tri-level inputs ('_tri' suffix)	0.4 V _{DDx}	0.5 V _{DDx}	$0.6 V_{DDx}$	V	
Input Low Voltage	V _{ILtri}		-0.3		0.25 V _{DDx}	V	
	I _{IN}	Single-ended inputs, V _{IN} = GND, V _{IN} = VDD	-5		5	uA	
Input Current		Single-ended inputs					
input ourront	I _{INP}	V_{IN} = 0 V; Inputs with internal pull-up resistors	-50		50	uA	
		V _{IN} = VDD; Inputs with internal pull-down resistors					
Input Frequency	F _{IN}	Bypass mode	1		200	MHz	2
input requency	ı IN	PLL mode	90	100.00	160	MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1
	C _{OUT}	Output pin capacitance			6	pF	1
CLK_IN Loss of Signal Detect Time	t Los			4.2	6	ms	1
CLK_IN Loss of Signal Release Time	L OSREL			0.12	0.5	ms	1
Clk Stabilization	t STAB				1.8	ms	1,2
Input SS Modulation Frequency PCIe	f MODINPCle	Allowable Frequency for PCIe Applications (Triangular Modulation)	30	31.5	33	kHz	
Input SS Modulation Frequency non-PCIe	f _{MODIN}	Allowable Frequency for non-PCIe Applications (Triangular Modulation)	0		66	kHz	
OE# Latency	tLATOE#	DIF start after OE# assertion DIF stop after OE# deassertion	1	2	3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	tR	Rise time of single-ended control inputs			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^2} Control$ input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

Electrical Characteristics-DIF Low-Power HCSL Outputs

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Slew rate	dV/dt	Scope averaging on, fast setting	2	2.4	4	V/ns	1,2,3
Siew rate	dV/dt	Scope averaging on, slow setting	1.2	1.6	2.9	V/ns	1,2,3
Slew rate matching	∆dV/dt	Slew rate matching		5	20	%	1,2,4
Voltage High	V_{HIGH}	Statistical measurement on single-ended signal using	660	764	850	mV -	7
Voltage Low	V_{LOW}	oscilloscope math function. (Scope averaging on)	-150	-6	150		7
Max Voltage	Vmax	Measurement on single ended signal using absolute value.		808	1150	mV	7
Min Voltage	Vmin	(Scope averaging off)	-300	-35		IIIV	7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	308	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		14	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Operating Supply Current	I _{DDA}	VDDA, PLL Mode, @100MHz		8	10	mA	
	I _{DD}	VDDx, All outputs active @100MHz		18	25	mA	
	I _{DDIO}	VDDIO, All outputs active @100MHz		26	35	mA	
Powerdown Current	I _{DDAPD}	VDDA, CKPWRGD_PD#=0		0.6	1	mA	2
	I _{DDPD}	VDDx, CKPWRGD_PD#=0		3.8	6	mA	2
	I _{DDIOPD}	VDDIO, CKPWRGD_PD#=0		0.05	0.10	mA	2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

² Input clock stopped.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
PLL Bandwidth	BW	-3dB point in High BW Mode (100MHz)	2	3.3	4	MHz	1,5
FLL Dalluwiuili	DVV	-3dB point in Low BW Mode (100MHz)	1	1.5	2	MHz	1,5
PLL Jitter Peaking	t IPEAK	Peak Pass band Gain (100MHz)		0.8	2	dB	1
Duty Cycle	t oc	Measured differentially, PLL Mode	45	50	55	%	1
Duty Cycle Distortion	t oco	Measured differentially, Bypass Mode	-1	0.0	1	%	1,3
Skew, Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2500	3440	4500	ps	1
Skew, input to Output	t pdPLL	PLL Mode V _T = 50%	-100	8	100	ps	1,4
Skew, Output to Output	t _{sk3}	Mean value, V _T = 50%, @100MHz		25	50	ps	1,4
Jitter, Cycle to cycle	t	PLL mode		15	50	ps	1,2
one in cycle	ೈ сус-сус	Additive Jitter in Bypass Mode		0.1	1	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Unfiltered Phase Jitter Parameters

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
	t	156.25MHz, 1.5MHz to 10MHz, -20dB/decade rollover		159		fs	1,2,3
Additive Phase Jitter,	₹jph156M	< 1.5MHz, -40db/decade rolloff > 10MHz		133		(rms)	1,2,3
Fanout Mode		156.25MHz, 12kHz to 20MHz, -20dB/decade rollover		262		fs	100
	∛ph156M12k-20	<12kHz, -40db/decade rolloff > 20MHz		363		(rms)	1,2,3

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

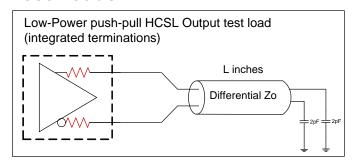
³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁴ All outputs at default slew rate

⁵ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

² DRiven by Rohde&Schartz SMA100

³ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]


Electrical Characteristics-Filtered Phase Jitter Parameters - PCIe Common Clocked (CC) Architectures

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Industry Limits	Units	Notes
	tjphPCleG1-CC	PCIe Gen 1		23	33	86	ps (p-p)	1,2,3,5
	4	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz (PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)		0.6	1.0	3	ps (rms)	1,2,5
Phase Jitter, PLL Mode	ljphPCleG2-CC	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)		1.7	2.4	3.1	ps (rms)	1,2,5
	tjphPCleG3-CC	PCIe Gen 3 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.4	0.50	1	ps (rms)	1,2,5
	tjphPCleG4-CC	PCIe Gen 4 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.4	0.50	0.5	ps (rms)	1,2,5
	[†] jphPCleG1-CC	PCIe Gen 1		0.09	0.10		ps (p-p)	1,2,5
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz (PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)		0.05	0.10		ps (rms)	1,2,4,5
Additive Phase Jitter, Bypass mode	tjphPCleG2-CC	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)		0.05	0.10	n/a	ps (rms)	1,2,4,5
	tjphPCleG3-CC	PCIe Gen 3 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.05	0.10		ps (rms)	1,2,4,5
	tjphPCleG4-CC	PCIe Gen 4 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.05	0.10		ps (rms)	1,2,4,5

¹ Applies to all outputs.

Test Loads

L = 5 inches

Terminations

Device	Zo (Ω)	Rs (Ω)
9DBL0643	100	None needed
9DBL0653	100	7.5
9DBL0643	85	N/A
9DBL0653	85	None needed

Alternate Terminations

The 9DBL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs"</u> for details.

² Based on PCIe Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS values additive jitter is calculated by solving the following equation for b $[a^2+b^2=c^2]$ where a is rms input jitter and c is rms total jitter.

⁵ Driven by 9FGL0841 or equivalent

Thermal Characteristics

Parameter	Symbol	Conditions	Package	Typical Values	Units	Notes
	θјс	Junction to Case		42	°C/W	1
	θЈЬ	Junction to Base		2.4	°C/W	1
Thermal Resistance	ӨЈА0Ө	Junction to Air, still air	NDG40	39	°C/W	1
Thermal Resistance	θ _{JA1}	Junction to Air, 1 m/s air flow	NDG40	33	°C/W	1
	θЈА3	Junction to Air, 3 m/s air flow		28	°C/W	1
	ӨЈА5	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board

General SMBus Serial Interface Information for 9DBL06x3

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ock '	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	g Byte N		
			ACK
0		~	
0		X Byte	0
0		тe	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

NOTE: SMBus Address is Latched on SADR pin. Unless otherwise indicated, default values are for the 0x43, and 0x53. Contact Factory for Quick-turn Customization.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block R	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
	ave Address		
RD	ReaD		
			ACK
			B + B + G + Y
	101		Data Byte Count=X
	ACK		D : : D : N
	4.01/		Beginning Byte N
	ACK		
		<u>a</u>	0
	0	X Byte	0
	0		0
	0		Duto N . V . 1
NI NI	Not polypourled a		Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Туре	0	1	Default
Bit 7	DIF OE5	Output Enable	RW	See B11[1:0]	Pin Control	1
Bit 6	DIF OE4	Output Enable	RW	366 011[1.0]	Pin Control	1
Bit 5		Reserved				0
Bit 4	DIF OE3	Output Enable	RW		Pin Control	1
Bit 3	DIF OE2	Output Enable	RW	See B11[1:0]	Pin Control	1
Bit 2	DIF OE1	Output Enable	RW		Pin Control	1
Bit 1	Reserved					
Bit 0	DIF OE0	Output Enable	RW	See B11[1:0]	Pin Control	1

^{1.} A low on these bits will overide the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Туре	0	1	Default
Bit 7	PLLMODERB1	PLL Mode Readback Bit 1	R	See PLL Operating Mode Table		Latch
Bit 6	PLLMODERB0	PLL Mode Readback Bit 0	R	See FLL Operat	ing wode rable	Latch
Bit 5	PLLMODE_SWCNTRL	Enable SW control of PLL Mode	RW	Values in B1[7:6] Values in B1[4:3] set PLL Mode set PLL Mode		0
Bit 4	PLLMODE1	PLL Mode Control Bit 1	RW ¹	See PLL Operat	ing Mode Table	0
Bit 3	PLLMODE0	PLL Mode Control Bit 0	RW ¹	See PLL Operai	ing wode rable	0
Bit 2		Reserved				1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01= 0.68V	1
Bit 0	AMPLITUDE 0	Controls Output Amplitude	RW	10 = 0.75V	11 = 0.85V	0

^{1.} B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: Slew Rate Control Register

Byte 2	Name	Control Function	Туре	0	1	Default
Bit 7	SLEWRATESEL DIF5	Slew rate selection	RW	Slow Setting	Fast Setting	1
Bit 6	SLEWRATESEL DIF4	Slew rate selection	RW	Slow Setting	Fast Setting	1
Bit 5		Reserved				1
Bit 4	SLEWRATESEL DIF3	Slew rate selection	RW	Slow Setting	Fast Setting	1
Bit 3	SLEWRATESEL DIF2	Slew rate selection	RW	Slow Setting	Fast Setting	1
Bit 2	SLEWRATESEL DIF1	Slew rate selection	RW	Slow Setting	Fast Setting	1
Bit 1	Reserved					
Bit 0	SLEWRATESEL DIF0	Slew rate selection	RW	Slow Setting	Fast Setting	1

Note: See "Low-Power HCSL Outputs" table for slew rates.

SMBus Table: Slew Rate Control Register

Byte 3	Name	Control Function	Туре	0	1	Default
Bit 7	Reserved					
Bit 6		Reserved				1
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2	Reserved					1
Bit 1	Reserved					1
Bit 0	SLEWRATESEL FB	Adjust Slew Rate of FB	RW	Slow Setting	Fast Setting	1

Byte 4 is Reserved

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R			0
Bit 6	RID2	Revision ID	R	A rev = 0000		0
Bit 5	RID1	Trevision in	R			0
Bit 4	RID0		R		0	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001	= IDT	0
Bit 1	VID1	VENDOR ID	R	0001	– 101	0
Bit 0	VID0		R			1

SMBus Table: Device ID

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	DeviceID7		RW			0
Bit 6	Device ID6		RW			1
Bit 5	Device ID5		RW	9DBL0243/	0253 = 52	0
Bit 4	Device ID4	Device ID	RW	9DBL0443/	0453 = 54	1
Bit 3	Device ID3	Device ID	RW	9DBL0643/	0653 = 56	Х
Bit 2	Device ID2		RW	9DBL0843/	0853 = 58	Х
Bit 1	Device ID1		RW			X
Bit 0	Device ID0		RW			Х

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	er will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0
Bit 1	BC1		RW	= 8 b	ytes.	0
Bit 0	BC0		RW			0

Bytes 8 and 9 are Reserved

SMBus Table: PD_Restore

<u> </u>						
Byte 10	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				1
Bit 6	Power-Down (PD) Restore	Restore Default Config. In PD	RW	Clear Config in PD	Keep Config in PD	1
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved			0	
Bit 1	Reserved			0		
Bit 0		Reserved				0

SMBus Table: Stop State and Impedance Control

Byte 11	Name	Control Function	Туре	0	1	Default
Bit 7	FB_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 6	FB_imp[0]	Dillerential Zout (orlins)	RW	01=85	11 = Reserved	See Note
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	STP[1]	STP[1] True/Complement DIF Output RW 00 = Low/Low 10 = High/Low				0
Bit 0	STP[0]	Disable State	RW	01 = HiZ/HiZ	11 = Low/High	0

Note: xx43 = 10, xx53 = 01

SMBus Table: Impedance Control

Byte 12	Name	Control Function	Туре	0	1	Default
Bit 7	DIF2_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 6	DIF2_imp[0]	Differential Zout (ohms)	RW	01=85	11 = Reserved	see Note
Bit 5	DIF1_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 4	DIF1_imp[0]	Dillerential Zout (Onins)	RW	01=85	11 = Reserved	SEE NOIE
Bit 3		Reserved				Х
Bit 2		Reserved				Х
Bit 1	DIF0_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 0	DIF0_imp[0]		RW	01=85	11 = Reserved	SEE NOIE

Note: xx43 = 10, xx53 = 01

SMBus Table: Impedance Control

Byte 13	Name	Control Function	Туре	0	1	Default
Bit 7	DIF5_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 6	DIF5_imp[0]	Dillerential 2001 (Onlins)	RW	01=85	11 = Reserved	See Note
Bit 5	DIF4_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 4	DIF4_imp[0]	Dillerential Zout (onins)	RW	01=85	11 = Reserved	See Note
Bit 3		Reserved				Х
Bit 2		Reserved				Х
Bit 1	DIF3_imp[1]	Differential Zout (ohms)	RW	00=33	10=100	see Note
Bit 0	DIF3_imp[0]	Dilierential 2001 (Onlins)	RW	01=85	11 = Reserved	SEE NOIE

Note: xx43 = 10, xx53 = 01

SMBus Table: Pull-up Pull-down Control

Byte 14	Name	Control Function	Туре	0	1	Default
Bit 7	OE2_pu/pd[1]	OE2 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE2_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE1_pu/pd[1]	OE1 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE1_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3		Reserved				Х
Bit 2		Reserved				X
Bit 1	OE0_pu/pd[1] OE0 Pull-up(PuP)/		RW	00=None	10=Pup	0
Bit 0	OE0_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

Note: These values are for xx43 and xx53.

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Control Function	Туре	0	1	Default
Bit 7	OE5_pu/pd[1]	OE5 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE5_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE4_pu/pd[1]	OE4 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE4_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3		Reserved				Χ
Bit 2		Reserved				Х
Bit 1	OE3_pu/pd[1]	OE3_pu/pd[1] OE3 Pull-up(PuP)/		00=None	10=Pup	0
Bit 0	OE3_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

Note: These values are for xx43 and xx53.

SMBus Table: Pull-up Pull-down Control

Byte 16	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	CKPWRGD_PD_pu/pd[1]	CKPWRGD_PD_pu/pd[1]				1
Bit 0	CKPWRGD_PD_pu/pd[0]	CKPWRGD_PD_pu/pd[0] Pull-down(Pdwn) control RW 01=Pdwn 11 = Pup+Pdv		11 = Pup+Pdwn	0	

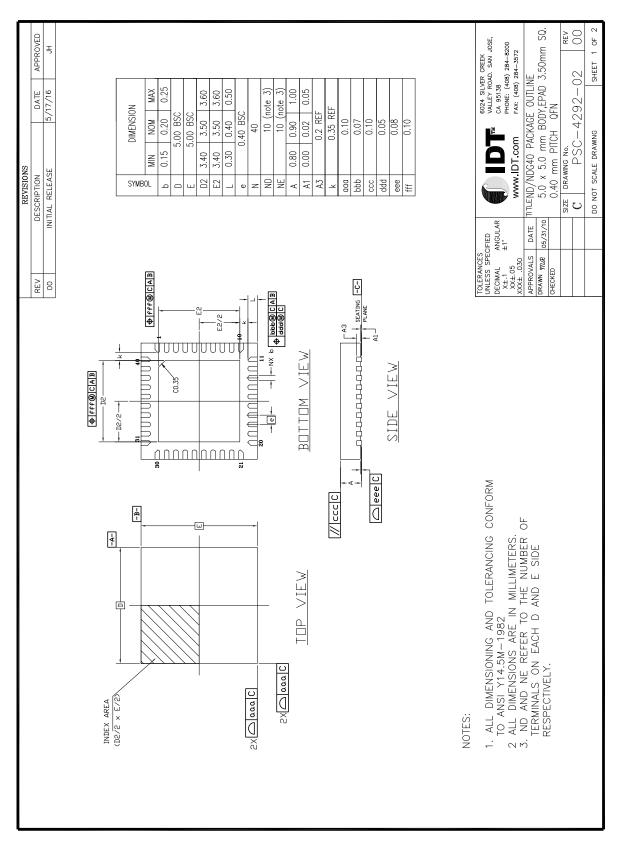
Note: These values are for xx43 and xx53.

Bytes 17 is Reserved and and reads back 0h00.

SMBus Table: Polarity Control

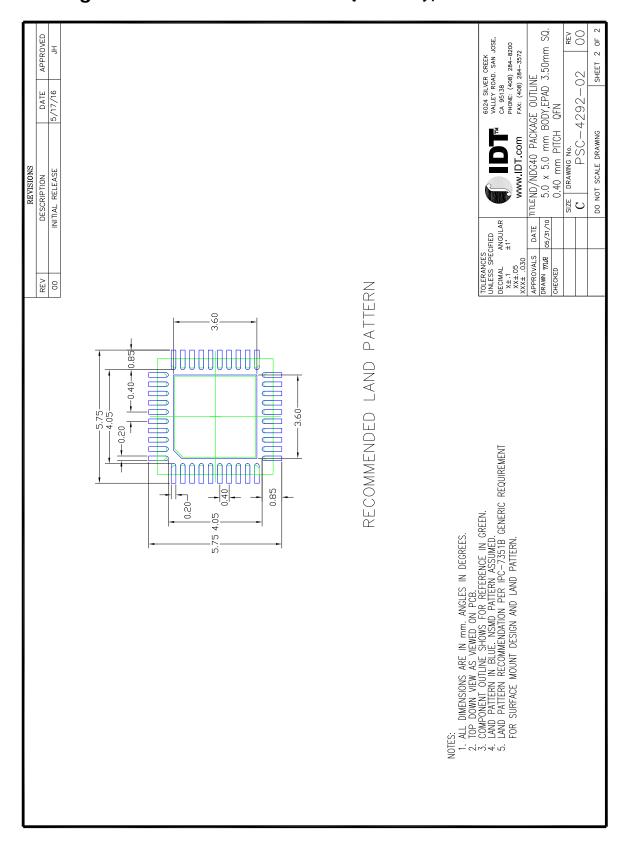
Byte 18	Name	Control Function	Туре	0	1	Default
Bit 7	OE5_polarity	Sets OE5 polarity	RW	Enabled when Low	Enabled when High	0
Bit 6	OE4_polarity	Sets OE4 polarity	RW	Enabled when Low	Enabled when High	0
Bit 5		Reserved				0
Bit 4	OE3_polarity	Sets OE3 polarity	RW	Enabled when Low	Enabled when High	0
Bit 3	OE2_polarity	Sets OE2 polarity	RW	Enabled when Low	Enabled when High	0
Bit 2	OE1_polarity	Sets OE1 polarity	RW	Enabled when Low	Enabled when High	0
Bit 1	Reserved		0			
Bit 0	OE0_polarity	Sets OE0 polarity	RW	Enabled when Low	Enabled when High	0

Note: These values are for xx43, and xx53.


SMBus Table: Polarity Control

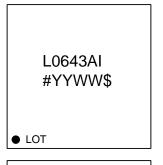
Byte 19	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	LOS Polarity	LOS Polarity Determines LOS polarity		Low when input clock absent.	High when input clock absent	1
Bit 0	CKPWRGD_PD	Determines CKPWRGD_PD polarity	RW	Power Down when Low	Power Down when High	0

Note: These values are for xx43, and xx53.



Package Outline and Dimensions (NDG40)

Package Outline and Dimensions (NDG40), cont.



Ordering Information

Part / Order Number	Notes	Shipping Packaging	Package	Temperature
9DBL0643ANDGI	100Ω	Trays	5 × 5 × 0.4 mm 40-VFQFPN	-40 to +85° C
9DBL0643ANDGI8	10022	Tape and Reel	5 × 5 × 0.4 mm 40-VFQFPN	-40 to +85° C
9DBL0653ANDGI	85Ω	Trays	5 × 5 × 0.4 mm 40-VFQFPN	-40 to +85° C
9DBL0653ANDGI8	0312	Tape and Reel	5 × 5 × 0.4 mm 40-VFQFPN	-40 to +85° C

[&]quot;G" designates PB-free configuration, RoHS compliant.

Marking Diagrams

1. "L" denotes RoHS compliant package.

- 2. "LOT" denotes the lot number.
- 3. "COO" denotes country of origin.
- 4. "YYWW" denotes the last two digits of the year and week the part was assembled.

L0653AI #YYWW\$

LOT

Revision History

Revision Date	Description of Change
February 1, 2017	 Updated max VDDx current from 23ma to 25mA. Updated max VDDIO current from 29mA to 35mA. Corrected Byte 16[3:2]. These bits are reserved with '00' default. Corrected Byte 19[1]. This bit determines the LOS polarity.
January 25, 2017	Corrected ohm symbols and output references in Bytes [11:13], stylistic update only.
December 22, 2016	Initial final release

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales Tech Support

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.