9DBU0541

5-Output 1.5V PCIe Gen1-2-3 Fanout Buffer with Zo=100ohms

DATASHEET

Description

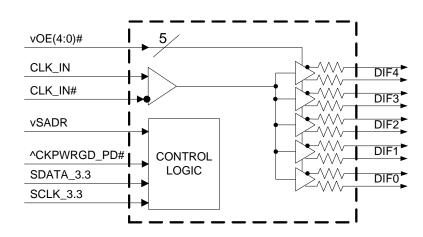
The 9DBU0541 is a member of IDT's 1.5V Ultra-Low-Power (ULP) PCIe family. It has integrated terminations for direct connection to 100Ω transmission lines. The device has 5 output enables for clock management, and 3 selectable SMBus addresses.

Recommended Application

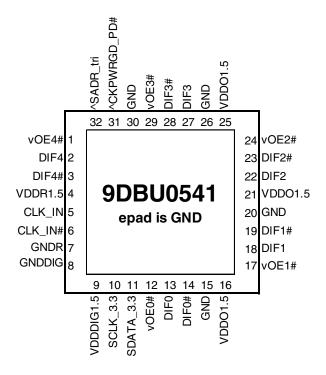
1.5V PCIe Gen1-2-3 Fanout Buffer (FOB)

Output Features

• 5 1–167MHz Low-Power (LP) HCSL DIF pairs with $Z_{O}{=}100\Omega$


Key Specifications

- DIF additive cycle-to-cycle jitter < 5ps
- DIF output-to-output skew < 60ps
- DIF *additive* phase jitter is < 300fs rms for PCIe Gen3
- DIF additive phase jitter < 350fs rms for SGMII


Features/Benefits

- Integrated terminations; save 20 resistors compared to standard HCSL outputs
- 35mW typical power consumption; eliminates thermal concerns
- Spread Spectrum (SS) compatible; allows SS for EMI reduction
- OE# pins; support DIF power management
- HCSL-compatible differential input; can be driven by common clock sources
- SMBus-selectable features; optimize signal integrity to application
 - slew rate for each output
 - differential output amplitude
- Device contains default configuration; SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Selectable SMBus addresses; multiple devices can easily share an SMBus segment
- 5 × 5 mm 32-VFQFPN; minimal board space

Block Diagram

Pin Configuration

32-pin VFQFPN, 5x5 mm, 0.5mm pitch

 ^ prefix indicates internal 120KOhm pull up resistor
 ^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)
 v prefix indicates internal 120KOhm pull down resistor

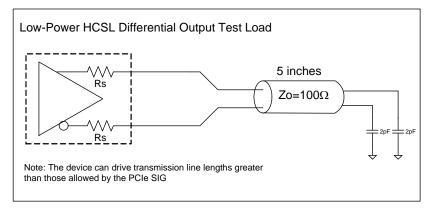
SMBus Address Selection Table

	SADR	Address	+ Read/Write bit
State of SADR on first application of	0	1101011	X
CKPWRGD PD#	М	1101100	Х
	1	1101101	x

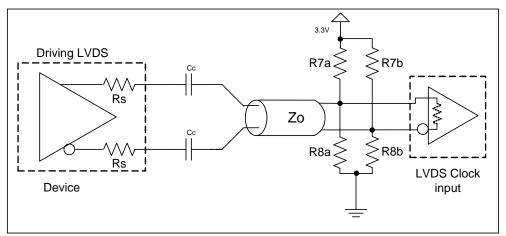
Power Management Table

CKPWRGD PD#	CLK IN	SMBus	OEx# Pin	DIFx		
		OEx bit		True O/P	Comp. O/P	
0	Х	Х	Х	Low	Low	
1	Running	0	Х	Low	Low	
1	Running	1	0	Running	Running	
1	Running	1	1	Low	Low	

Power Connections


Pin Num	ber	Description			
VDD	GND	Description			
4	7	Input receiver analog			
9	8	Digital power			
16, 21, 25	15,20,26,30	DIF outputs			

Note: EPAD on this device is not electrically connected to the die. It should be connected to ground for best thermal performance.


Pin Descriptions

Pin#	Pin Name	Туре	Pin Description
4			Active low input for enabling output 4. This pin has an internal 120kohm pull-down.
1	vOE4#	IN	1 = disable outputs, 0 = enable outputs.
2	DIF4	OUT	Differential true clock output.
3	DIF4#	OUT	Differential complementary clock output.
4	VDDR1.5	PWR	1.5V power for differential input clock (receiver). This VDD should be treated as an
4	1.5		Analog power rail and filtered appropriately.
5	CLK_IN	IN	True input for differential reference clock.
6	CLK_IN#	IN	Complementary input for differential reference clock.
7	GNDR	GND	Analog ground pin for the differential input (receiver)
8	GNDDIG	GND	Ground pin for digital circuitry.
9	VDDDIG1.5	PWR	1.5V digital power (dirty power)
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	vOE0#	IN	Active low input for enabling output 0. This pin has an internal 120kohm pull-down.
12	VOE0#	IIN	1 = disable outputs, 0 = enable outputs.
13	DIF0	OUT	Differential true clock output.
14	DIF0#	OUT	Differential complementary clock output.
15	GND	GND	Ground pin.
16	VDDO1.5	PWR	Power supply for outputs, nominally 1.5V.
17	vOE1#	IN	Active low input for enabling output 1. This pin has an internal 120kohm pull-down.
			1 = disable outputs, 0 = enable outputs.
18	DIF1	OUT	Differential true clock output.
19	DIF1#	OUT	Differential complementary clock output.
20	GND	GND	Ground pin.
21	VDDO1.5	PWR	Power supply for outputs, nominally 1.5V.
22	DIF2	OUT	Differential true clock output.
23	DIF2#	OUT	Differential complementary clock output.
24	vOE2#	IN	Active low input for enabling output 2. This pin has an internal 120kohm pull-down.
24	VOL2#		1 = disable outputs, 0 = enable outputs.
	VDDO1.5	PWR	Power supply for outputs, nominally 1.5V.
26	GND	GND	Ground pin.
27	DIF3	OUT	Differential true clock output.
28	DIF3#	OUT	Differential complementary clock output.
29	vOE3#	IN	Active low input for enabling output 3. This pin has an internal 120kohm pull-down.
20			1 = disable outputs, 0 = enable outputs.
30	GND	GND	Ground pin.
			Input notifies device to sample latched inputs and start up on first high assertion.
31	^CKPWRGD_PD#	IN	Low enters Power Down Mode, subsequent high assertions exit Power Down Mode.
			This pin has internal 120kohm pull-up resistor.
		LATCHED	Tri-level latch to select SMBus Address. It has an internal 120kohm pull up resistor.
32	^SADR_tri	IN	See SMBus Address Selection Table.
33	EPAD	GND	Connect EPAD to ground.

Test Loads

Driving LVDS

Driving LVDS Inputs

		/alue
Component	Receiver has termination	Receiver does not have termination
R7a, R7b	10K ohm	140 ohm
R8a, R8b	5.6K ohm	75 ohm
Cc	0.1µF	0.1µF
Vcm	1.2 volts	1.2 volts

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBU0541. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Applies to all VDD pins	-0.5		2	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} +0.5	V	1,
Input High Voltage, SMBus	VIHSMB	SMBus clock and data pins			3.3	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD Protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.0V.

Electrical Characteristics–Clock Input Parameters

TA = T_{AMB}; Supply voltages per normal operation conditions; see Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Common Mode Voltage - DIF_IN	V _{COM}	Common mode input voltage	200		725	mV
Input Swing - DIF_IN	V _{SWING}	Differential value	300		1450	mV
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA
Input Duty Cycle	d _{tin}	Measurement from differential waveform	45	50	55	%
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential measurement	0		150	ps

¹ Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through +/-75mV window centered around differential zero.

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions

 $TA = T_{AMB}$; Supply voltages per normal operation conditions; see Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.425	1.5	1.575	V	
Ambient Operating	T _{AMB}	Commercial range	0	25	70	°C	1
Temperature	I AMB	Industrial range	-40	25	85	°C	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	$0.75 V_{DD}$		$V_{DD} + 0.3$	V	
Input Mid Voltage	VIM	Single-ended tri-level inputs ('_tri' suffix)	$0.4 V_{DD}$		0.6 V _{DD}	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus	-0.3		$0.25 V_{DD}$	V	
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	μA	
Input Current	I _{INP}	Single-ended inputs V _{IN} = 0 V; inputs with internal pull-up resistors V _{IN} = VDD; inputs with internal pull-down resistors	-200		200	μA	
Input Frequency	F _{in}		1		167	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,5
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} power-up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCIe	f _{MODINPCIe}	Allowable frequency for PCIe applications (Triangular modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCIe	f _{MODIN}	Allowable frequency for non-PCIe applications (Triangular modulation)	0		66	kHz	
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	μs	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2
SMBus Input Low Voltage	VILSMB				0.6	V	
SMBus Input High Voltage	VIHSMB	V_{DDSMB} = 3.3V, see note 4 for V_{DDSMB} < 3.3V	2.1		3.3	V	4
SMBus Output Low Voltage	V _{OLSMB}	at I _{PULLUP}			0.4	V	
SMBus Sink Current	IPULLUP	at V _{OL}	4			mA	
Nominal Bus Voltage	V _{DDSMB}	Bus voltage	1.425		3.3	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15V) to (Min VIH + 0.15V)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15V) to (Max VIL - 0.15V)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			400	kHz	6

¹ Guaranteed by design and characterization, not 100% tested in production.

 $^{\rm 2}$ Control input must be monotonic from 20% to 80% of input swing.

³ Time from deassertion until outputs are > 200 mV.

⁴ For $V_{DDSMB} < 3.3V$, $V_{IHSMB} >= 0.8xV_{DDSMB}$

⁵ DIF_IN input.

⁶ The differential input clock must be running for the SMBus to be active.

Electrical Characteristics–DIF Low-Power HCSL Outputs

TA = T_{AMB}; Supply voltages per normal operation conditions; see Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	NOTES
Slew Rate	dV/dt	Scope averaging on, fast setting	1	2.4	3.5	V/ns	1,2,3
Siew hate	dV/dt	Scope averaging on, slow setting	0.7	1.7	2.5	V/ns	1,2,3
Slew Rate Matching	∆dV/dt	Slew rate matching, scope averaging on		9	20	%	1,2,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	630	750	850	mV	7
Voltage Low	V _{LOW}	averaging on)	-150	26	150		7
Max Voltage	Vmax	Measurement on single ended signal using		763	1150	mV	7
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	22			7
Vswing	Vswing	Scope averaging off	300	1448		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	390	550	mV	1,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		11	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform.

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting △-Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

Electrical Characteristics–Current Consumption

 $TA = T_{AMB}$; Supply voltages per normal operation conditions; see Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DDR}	VDDR at 100MHz		1.9	3	mA	
Operating Supply Current	I _{DDDIG}	VDDIG, all outputs at 100MHz		0.1	0.5	mA	
	I _{DDAO}	VDDO1.5+VDDO, all outputs at 100MHz		20	25	mA	
	I _{DDRPD}	VDDR, CKPWRGD_PD# = 0		0.001	0.3	mA	2
Powerdown Current	IDDDIGPD	VDDDIG, CKPWRGD_PD# = 0		0.1	0.2	mA	2
	I _{DDAOPD}	VDDO1.5+VDDO, CKPWRGD_PD# = 0		0.5	1	mA	2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Input clock stopped.

Electrical Characteristics–Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}; Supply voltages per normal operation conditions; see Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	t _{DCD}	Measured differentially, at 100MHz	-1	-0.2	0.5	%	1,3
Skew, Input to Output	t _{pdBYP}	V _T = 50%	2400	2862	3700	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%		30	50	ps	1,4
Jitter, Cycle to Cycle	t _{jcyc-cyc}	Additive Jitter		0.1	5	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform.

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock.

⁴ All outputs at default slew rate.

Electrical Characteristics–Phase Jitter Parameters

TA = T_{AMB}; Supply voltages per normal operation conditions; see Test Loads for loading conditions

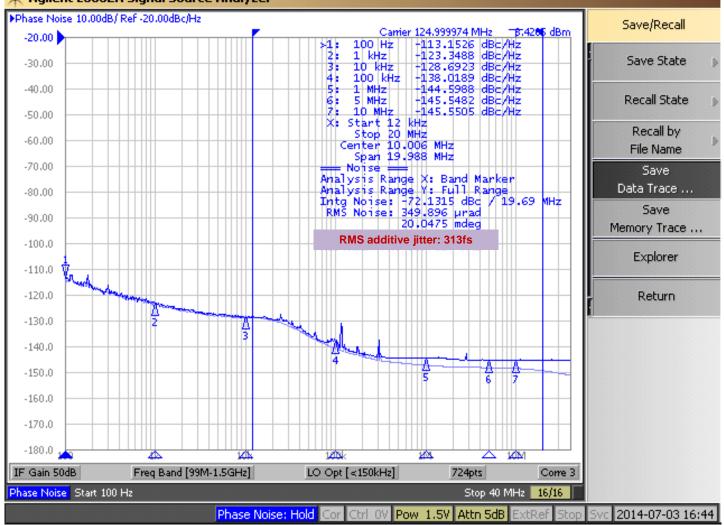
						INDUSTRY			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LIMIT	UNITS	Notes	
	t _{iphPCleG1}	PCIe Gen 1		0.1	5	N/A	ps (p-p)	1,2,3,5	
		PCIe Gen 2 Lo Band		0.1	0.4	N/A	ps	1,2,3,4,	
	+	10kHz < f < 1.5MHz		0.1	0.4	IV/A	(rms)	5	
	ljphPCleG2	PCIe Gen 2 High Band	0.1	0.1	0.7	N/A	ps	1,2,3,4	
		1.5MHz < f < Nyquist (50MHz)		0.1	0.7	IV/A	(rms)		
Additive Phase Jitter	t	PCIe Gen 3		0.1	0.3	N/A	ps	1,2,3,4	
	t _{jphPCleG3}	(2-4MHz or 2-5MHz, CDR = 10MHz)		0.1	0.0	IW A	(rms)	1,2,3,4	
		125MHz, 1.5MHz to 10MHz, -20dB/decade		200	250	N/A	fs	1.0	
	t _{jphSGMIIM0}	rollover < 1.5MHz, -40db/decade rolloff > 10MHz		200	200	IWA	(rms)	1,6	
		125MHz, 12kHz to 20MHz, -20dB/decade rollover					fs		
	t _{jphSGMIIM1}	< 1.5MHz, -40db/decade rolloff > 10MHz		313	350	N/A	(rms)	1,6	

¹Guaranteed by design and characterization, not 100% tested in production.

² See http://www.pcisig.com for complete specs.

³ Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1-12.

⁴ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2].


8

⁵ Driven by 9FGV0831 or equivalent.

⁶ Rohde & Schwarz SMA100.

Additive Phase Jitter Plot: 125M (12kHz to 20MHz)

🔆 Agilent E5052A Signal Source Analyzer 🛛

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will **acknowledge**
- Controller (host) sends the byte count = X
- IDT clock will **acknowledge**
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

	Index Block Write Operation							
Controll	er (Host)		IDT (Slave/Receiver)					
Т	starT bit							
Slave A	Address							
WR	WRite							
			ACK					
Beginning	g Byte = N							
			ACK					
Data Byte	Count = X							
			ACK					
Beginnin	ig Byte N							
			ACK					
0		\times						
0		X Byte	0					
0		Ð	0					
			0					
Byte N	+ X - 1							
			ACK					
Р	stoP bit							

Note: SMBus Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	lead O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address	-	
WR	WRite	-	
		-	ACK
Begi	nning Byte = N	-	
			ACK
RT	Repeat starT	-	
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		e	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

10

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Туре	0	1	Default				
Bit 7	Reserved									
Bit 6	DIF OE3	Output Enable RW Low/Low Enabled				1				
Bit 5	DIF OE2	Output Enable	Enabled	1						
Bit 4	Reserved									
Bit 3	DIF OE1	Output Enable RW Low/Low Enabled		1						
Bit 2	Reserved									
Bit 1	DIF OE0	Output Enable	RW	Low/Low	Enabled	1				
Bit 0		Reserved								

1. A low on these bits will override the OE# pin and force the differential output Low/Low

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Туре	0	1	Default			
Bit 7	Reserved								
Bit 6	Reserved								
Bit 5	DIF OE4	Output Enable	RW	Low/Low	Enabled	1			
Bit 4	Reserved								
Bit 3	Reserved								
Bit 2	Reserved								
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.55V	01= 0.65V	1			
Bit 0	AMPLITUDE 0		RW	10 = 0.7V	11 = 0.8V	0			

1. A low on the DIF OE bit will override the OE# pin and force the differential output Low/Low

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Туре	0	1	Default		
Bit 7	Reserved							
Bit 6	SLEWRATESEL DIF3	VRATESEL DIF3 Slew Rate Selection RW Slow Setting Fast S						
Bit 5	SLEWRATESEL DIF2	Slew Rate Selection	RW	Slow Setting	Fast Setting	1		
Bit 4	Reserved							
Bit 3	SLEWRATESEL DIF1	Slew Rate Selection	RW	Slow Setting	Fast Setting	1		
Bit 2		Reserved				1		
Bit 1	Slow Setting	Fast Setting	RW	Slow Setting	Fast Setting	1		
Bit 0		Reserved				1		

Note: See "DIF 0.7V Low-Power HCSL Outputs" table for slew rates.

SMBus Table: DIF Slew Rate Control Register

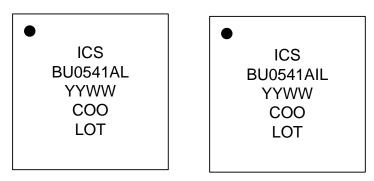
Bit 7 Bit 6 Bit 5	Reserved Reserved Reserved				1				
					1				
Bit 5	Reserved								
			Reserved						
Bit 4	Reserved								
Bit 3	Reserved								
Bit 2	Reserved								
Bit 1	Reserved								
Bit 0 SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	Slow Setting	Fast Setting	1				

Note: See "DIF 0.7V Low-Power HCSL Outputs" table for slew rates.

Byte 4 is Reserved and reads back 'hFF

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R			0
Bit 6	RID2	Revision ID	R	A rev =	- 0000	0
Bit 5	RID1		R	A lev -	= 0000	0
Bit 4	RID0		R		0	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001 =		0
Bit 1	VID1	VENDORID	R	0001 =	101/103	0
Bit 0	VID0		R			1

SMBus Table: Revision and Vendor ID Register


SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Device Type1	Device Type	R	00 = FGx,	01 = DBx,	1
Bit 6	Device Type0	Device Type	R	10 = DMx, 11=	= DBx w/oPLL	1
Bit 5	Device ID5		R			0
Bit 4	Device ID4		R			0
Bit 3	Device ID3	Device ID	R	000101 bina	ny or 05 bey	0
Bit 2	Device ID2	Device ID	R			1
Bit 1	Device ID1]	R			0
Bit 0	Device ID0		R			1

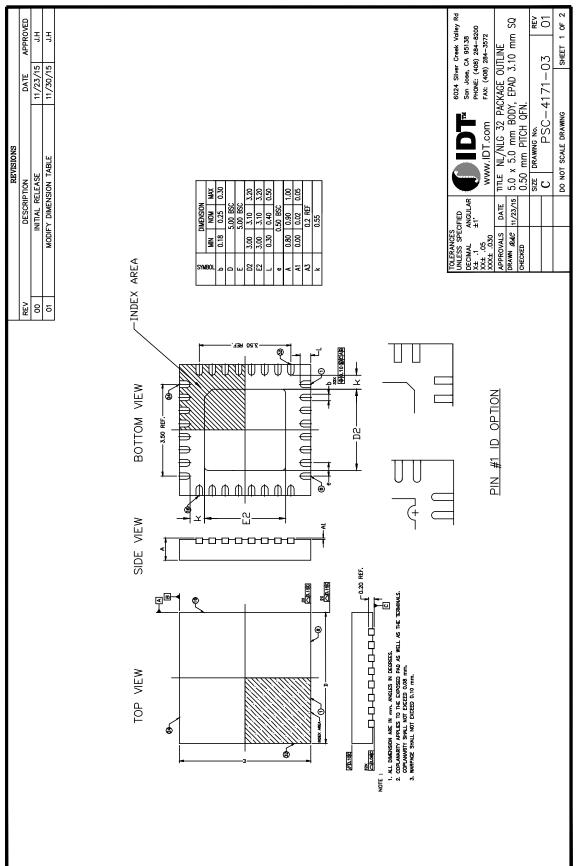
SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default		
Bit 7	Reserved							
Bit 6	Reserved							
Bit 5	Reserved							
Bit 4	BC4		RW			0		
Bit 3	BC3		RW	Writing to this regist	er will configure how	1		
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0		
Bit 1	BC1		RW	= 8 b	ytes.	0		
Bit 0	BC0		RW			0		

Marking Diagrams

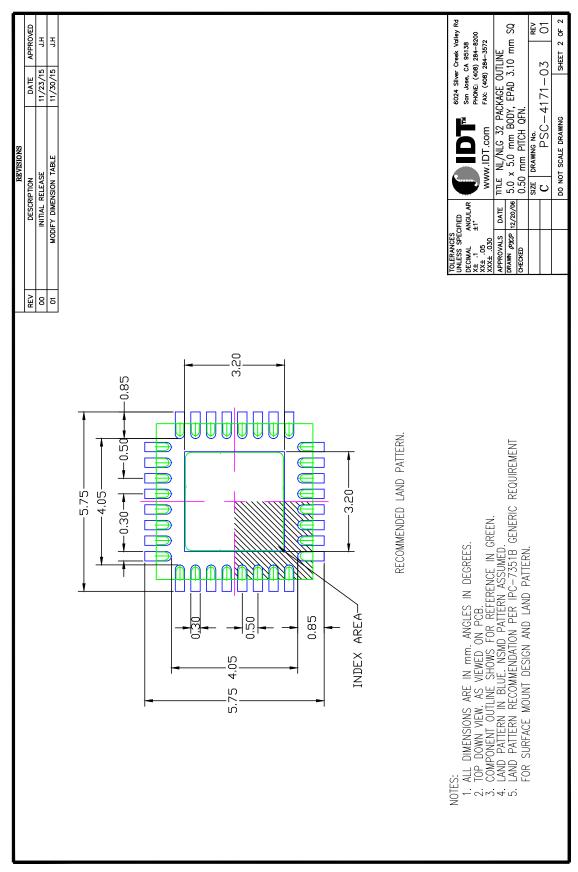
Notes:

- 1. "LOT" is the lot sequence number.
- 2. "COO" denotes country of origin.
- 3. YYWW is the last two digits of the year and week that the part was assembled.
- 4. Line 2: truncated part number
- 5. "L" denotes RoHS compliant package.
- 6. "I" denotes industrial temperature range device.


Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ _{JC}	Junction to Case		42	°C/W	1
	θ_{Jb}	Junction to Base		2.4	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air	NLG32	39	°C/W	1
mermai nesistance	θ_{JA1}	Junction to Air, 1 m/s air flow	INLG32	33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		28	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board



14

Package Outline and Dimensions (NLG32), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBU0541AKLF	Trays	32-pin VFQFPN	0 to +70° C
9DBU0541AKLFT	Tape and Reel	32-pin VFQFPN	0 to +70° C
9DBU0541AKILF	Trays	32-pin VFQFPN	-40 to +85° C
9DBU0541AKILFT	Tape and Reel	32-pin VFQFPN	-40 to +85° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. "A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Initiator	Issue Date	Description	Page #
Α	RDW	7/15/2014	Final update and release - front page and electrical tables.	Various
В	RDW	7/24/2014	1. Removed VDDIO reference in the Electrical Characteristics - Input/Supply/Common Parameters and Absolute Maximum Ratings tables. This power rail does not exist on this device. The pinout and the pin descriptions are correct.	6
С	RDW	9/19/2014	Updated SMBus Input High/Low parameters conditions, MAX values, and footnotes.	6
D	RDW	4/22/2015	 Updated Key Specifications to be consistent across the family. Updated pin out and pin descriptions to show ePad on package connected to ground. Updated Clock Input Parameters table to be consistent with PCIe Vswing parameter. Add note about epad to Power Connections table. 	1-3,5
Е	RDW	2/16/2017	1. Updated pins 21 and 20 from VDDA1.5/GNDA to VDDO1.5/GND to clearly indicate that this part has no PLL.	2, 3
F	RDW	3/9/2017	 Removed "Bypass Mode" reference in "Output Duty Cycle" and "Phase Jitter Parameters" tables; update note 3 under Output Duty Cycle table. Corrected spelling errors/typos. Change VDDA to VDDO1.5 in Current Consumption table. Update Additive Phase Jitter conditions for PCIe Gen3. 	7, 8

16

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.idt.com

Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.idt.com/go/sales Tech Support www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.