2:4 1.5V PCIe Gen1-2-3 Clock Mux w/Zo=100ohms

9DMU0441

DATASHEET

General Description

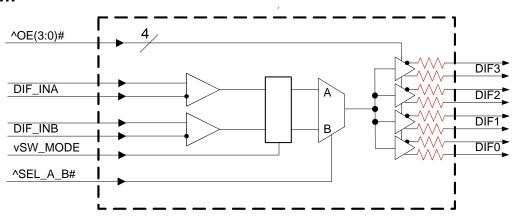
The 9DMU0441 is a member of IDT's SOC-Friendly 1.5V Ultra-Low-Power (ULP) PCIe Gen1-2-3 family. It has integrated output terminations providing Zo=100ohms for direct connection to 100ohm transmission lines. Each of the 4 outputs has its own dedicated OE# pin for optimal system control and power management. The part provides asynchronous and glitch-free switching modes.

Recommended Application

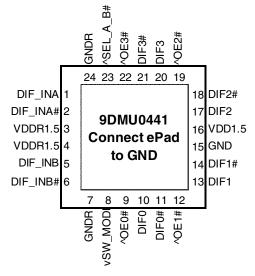
2:4 PCIe Gen1-2-3 clock multiplexer

Output Features

• 4 – Low-Power (LP) HCSL DIF pairs w/Zo=100 Ω


Key Specifications

- DIF *additive* cycle-to-cycle jitter <5ps
- DIF phase jitter is PCIe Gen1-2-3 compliant
- Additive phase jitter @ 125MHz: 535fs rms typical (12kHz to 20MHz)
- DIF output-to-output skew <50ps


Block Diagram

Features/Benefits

- LP-HCSL outputs w/integrated terminations; saves 16 resistors compared to standard HCSL outputs
- 1.5V operation; 26mW typical power consumption
- Selectable asynchronous or glitch-free switching; allows the mux to be selected at power up even if both inputs are not running, then transition to glitch-free switching mode
- Spread Spectrum Compatible; supports EMI reduction
- OE# pins; support DIF power management
- HCSL differential inputs; can be driven by common clock sources
- 1MHz to 167MHz operating frequency
- Space saving 24-pin 4x4mm VFQFPN; minimal board space

Pin Configuration

24 VFQFPN, 4x4 mm, 0.5mm pitch

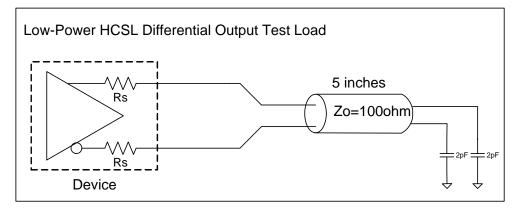
^ prefix indicates internal 120KOhm pull up resistor v prefix indicates internal 120KOhm pull down resistor

Power Management Table

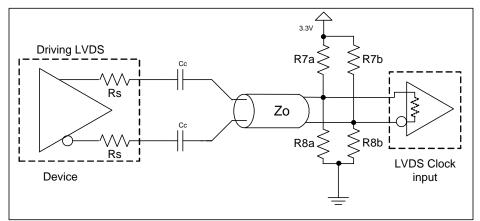
OEx# Pin	DIF IN	DIFx				
		True O/P	Comp. O/P			
0	Running	Running	Running			
1	Running	Low	Low			

Power Connections

Pin N	umber	Description				
VDD	GND	Description				
3	24	Input A receiver analog				
4	7	Input B receiver analog				
16	15	DIF outputs				


Pin Descriptions

Pin#	Pin Name	Туре	Pin Description				
1	DIF_INA	IN	HCSL Differential True input				
2	DIF_INA#	IN	HCSL Differential Complement Input				
3	VDDR1.5	PWR	1.5V power for differential input clock (receiver). This VDD should be treated as an Analog				
5	VDDI11.5		power rail and filtered appropriately.				
4	VDDR1.5	PWR	1.5V power for differential input clock (receiver). This VDD should be treated as an Analog				
-	VDDITI.5		power rail and filtered appropriately.				
5	DIF_INB	IN	HCSL Differential True input				
6	DIF_INB#	IN	HCSL Differential Complement Input				
7	GNDR	GND	Analog Ground pin for the differential input (receiver)				
			Switch Mode. This pin selects either asynchronous or glitch-free switching of the mux. Use asynchronous mode if 0 or 1 of the input clocks is running. Use glitch-free mode if both input				
8	vSW MODE	W MODE IN	clocks are running. This pin has an internal pull down resistor of ~120kohms.				
0	VOW_MODE		0 = asynchronous mode				
			1 = glitch-free mode				
			Active low input for enabling DIF pair 0. This pin has an internal pull-up resistor.				
9	^OE0#	IN	1 =disable outputs, 0 = enable outputs				
10	DIF0	OUT	Differential true clock output				
11	DIF0#	OUT	Differential Complementary clock output				
12	^OE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-up resistor.				
12	NUE1#	IIN	1 =disable outputs, 0 = enable outputs				
13	DIF1	OUT	Differential true clock output				
14	DIF1#	OUT	Differential Complementary clock output				
15	GND	GND	Ground pin.				


Pin# Pin Name Туре Pin Description 16 VDD1.5 PWR Power supply, nominally 1.5V DIF2 OUT Differential true clock output 17 18 DIF2# OUT Differential Complementary clock output Active low input for enabling DIF pair 2. This pin has an internal pull-up resistor. ^OE2# IN 19 1 =disable outputs, 0 = enable outputs 20 DIF3 OUT Differential true clock output 21 DIF3# OUT Differential Complementary clock output Active low input for enabling DIF pair 3. This pin has an internal pull-up resistor. IN 22 ^OE3# 1 = disable outputs, 0 = enable outputsInput to select differential input clock A or differential input clock B. This input has an internal 23 ^SEL_A_B# IN pull-up resistor. 0 = Input B selected, 1 = Input A selected. GND Analog Ground pin for the differential input (receiver) GNDR 24 25 EPAD GND Connect to Ground.

Pin Descriptions (cont.)

Test Loads

Driving LVDS

Driving LVDS inputs

	, ,	Value			
	Receiver has Receiver does not				
Component	termination	have termination	Note		
R7a, R7b	10K ohm	140 ohm			
R8a, R8b	5.6K ohm	75 ohm			
Cc	0.1 uF	0.1 uF			
Vcm	1.2 volts	1.2 volts			

Electrical Characteristics–Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS	NOTES
Supply Voltage	VDDx		-0.5		2	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} +0.5	V	1,3
Input High Voltage, SMBus	VIHSMB	SMBus clock and data pins			3.3	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.0V.

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

	-						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.425	1.5	1.575	V	
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	$0.75 V_{DD}$		V _{DD} + 0.3	V	
Input Low Voltage	VIL	Single-ended inputs, except SMBus	-0.3		$0.25 V_{DD}$	V	
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 V$; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resistors	-200		200	uA	
Input Frequency	F _{in}		1		167	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCIe	f _{MODINPCIe}	Allowable Frequency for PCIe Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCIe	f _{MODIN}	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴ DIF_IN input

Electrical Characteristics–Clock Input Parameters

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	DITIONS MIN TYP		MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs 300 750 1150 (single-ended measurement)		mV	1		
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300 0		300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	200		725	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.35		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45	50	55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		150	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics–DIF Low-Power HCSL Outputs

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting	1.1	2.3	3.4	V/ns	1,2,3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on		12	20	%	1,2,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	550	755	850	mV	
Voltage Low	V _{LOW}	averaging on)	-150	28	150		
Max Voltage	Vmax	Measurement on single ended signal using		761	1150	mV	
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	10		mv	
Vswing	Vswing	Scope averaging off	300	1455		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	377	550	mV	1,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		10	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ -Vcross to be smaller than Vcross absolute.

Electrical Characteristics–Current Consumption

 $TA = T_{AMB}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD}	VDD, All outputs active @100MHz		17	26	mA	1
Powerdown Current	I _{DDPD}	VDD, all outputs disabled		1.4	2.5	mA	1, 2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Input clock stopped.

Electrical Characteristics–Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-1	-0.1	1	%	1,3
Skew, Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2082	2915	4081	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%		16	50	ps	1,4
Jitter, Cycle to cycle	t _{icyc-cyc}	Additive Jitter in Bypass Mode		0.1	5	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode

⁴ All outputs at default slew rate

⁵ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

Electrical Characteristics–Phase Jitter Parameters

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

						INDUSTR		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	Y LIMIT	UNITS	Notes
	t _{jphPCIeG1}	PCIe Gen 1		1.3	5	N/A	ps (p-p)	1,2,3,5
		PCIe Gen 2 Lo Band		0.1	0.5	N/A	ps	1,2,3,4,
	t	10kHz < f < 1.5MHz		0.1	0.5		(rms)	5
	t _{jphPCleG2}	PCIe Gen 2 High Band	0.1		0.6	N/A	ps	1,2,3,4
		1.5MHz < f < Nyquist (50MHz)		0.1	0.0		(rms)	1,2,0,4
Additive Phase Jitter,	t _{iphPCIeG3}	PCle Gen 3		0.170	0.3	N/A	ps	1,2,3,4
Bypass Mode	sphPCleG3	(PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.170	0.0	10//	(rms)	1,2,0,1
		125MHz, 1.5MHz to 10MHz, -20dB/decade					fs	
	t _{jph125M0}	rollover < 1.5MHz, -40db/decade rolloff > 10MHz		365	380	N/A	(rms)	1,6
		,					、 ,	
	t _{iph125M1}	125MHz, 12KHz to 20MHz, -20dB/decade		535	550	N/A	fs	1,6
	-jp1123W1	rollover < 12kHz, -40db/decade rolloff > 20MHz		000	000		(rms)	.,•

¹Guaranteed by design and characterization, not 100% tested in production.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]

⁵ Driven by 9FGU0831 or equivalent

⁶ Rohde&Schartz SMA100

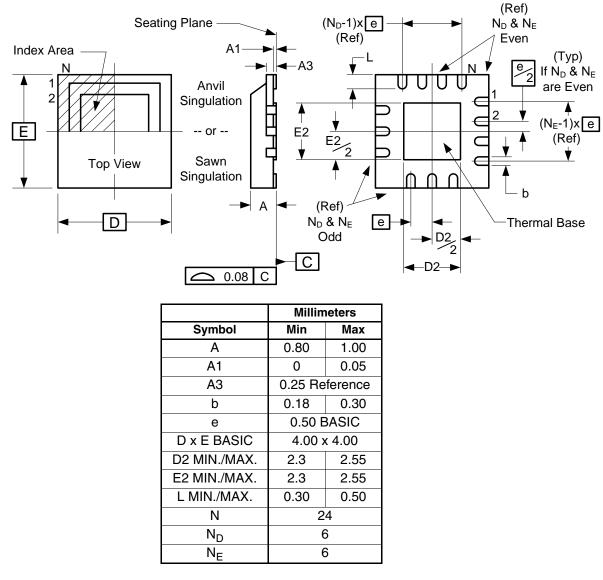
Marking Diagrams

Notes:

1. "LOT" denotes the lot number.

2. "YYWW" is the last two digits of the year and week that the part was assembled.

3. Line 2: truncated part number


4. "I" denotes industrial temperature grade.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ _{JC}	Junction to Case		42	°C/W	1
	θ_{Jb}	Junction to Base	NLG24	2.4	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air		39	°C/W	1
mermai Resistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NLG24	33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		28	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board

Package Outline and Package Dimensions (NLG24)

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DMU0441AKILF	Tubes	24-pin VFQFPN	-40 to +85° C
9DMU0441AKILFT	Tape and Reel	24-pin VFQFPN	-40 to +85° C

"LF" to the suffix denotes Pb-Free configuration, RoHS compliant.

"A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Initiator	Issue Date	Description	Page #
A RD		9/24/2014	1. Updated addtive phase jitter and General Description	17
	TIDW	3/24/2014	2. Move to final	1,7

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA

Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com Tech Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2014 Integrated Device Technology, Inc.. All rights reserved.