RENESAS 6-Output Very Low-Power PCIe Gen 1-2-3-4 Clock Generator

9FGV0631C

DATASHEET

Description

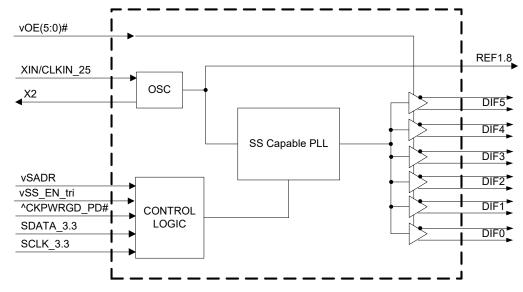
The 9FGV0631C is a member of IDT's SOC-Friendly 1.8V very low-power PCIe clock family. The device has 6 output enables for clock management, 2 different spread spectrum levels in addition to spread off, and 2 selectable SMBus addresses.

Typical Applications

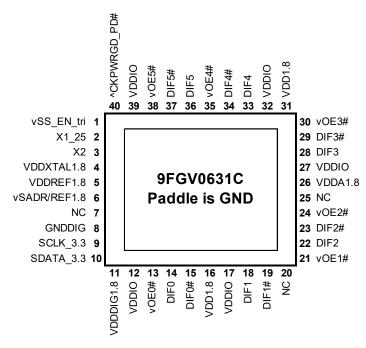
PCIe Gen1–4 clock generation for Riser Cards, Storage, Networking, JBOD, Communications, Access Points

Output Features

- 6 100MHz Low-Power (LP) HCSL DIF pairs
- 1 1.8V LVCMOS REF output w/Wake-On-LAN (WOL) support


Key Specifications

- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew <50ps
- DIF phase jitter is PCIe Gen1-2-3-4 compliant
- REF phase jitter is < 1.5ps RMS


Features

- LP-HCSL outputs; save 12 resistors compared to standard PCIe devices
- 54mW typical power consumption; reduced thermal concerns
- Outputs can optionally be supplied from any voltage between 1.05V and 1.8V; maximum power savings
- OE# pins; support DIF power management
- Programmable slew rate for each output; allows tuning for various line lengths
- Programmable output amplitude; allows tuning for various application environments
- DIF outputs blocked until PLL is locked; clean system start-up
- Selectable 0%, -0.25% or -0.5% spread on DIF outputs; reduces EMI
- External 25MHz crystal; supports tight ppm with 0 ppm synthesis error
- Configuration can be accomplished with strapping pins; SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 5 x 5 mm 40-VFQFPN; minimal board space

Block Diagram

Pin Configuration

40-VFQFPN, 5 x 5 mm, 0.4mm pitch

v prefix indicates internal 120kOhm pull-down resistor

^ prefix indicates internal 120kOhm pull-up resistor

SMBus Address Selection Table

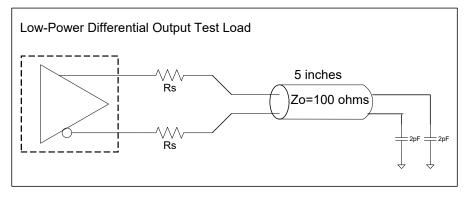
	SADR	Address	+ Read/Write Bit
State of SADR on first application	0	1101000	Х
of CKPWRGD_PD#	1	1101010	Х

Power Management Table

CKPWRGD PD#	SMBus		DIFx		
	OE bit	bit OEx# True O/P Comp. O/P		REF	
0	Х	Х	Low	Low	Hi-Z ¹
1	1	0	Running	Running	Running
1	0	1	Low	Low	Low

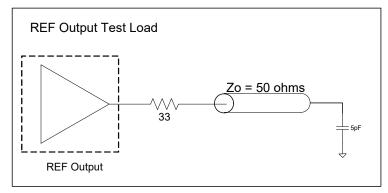
1. REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is Low.

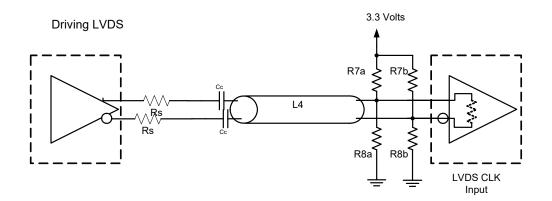
Power Connections


Pin Number			Description
VDD	VDDIO	GND	Description
4		41	XTAL OSC
5		41	REF Power
11		8	Digital (dirty) Power
	12,17,27,32,39	41	DIF outputs
26		41	PLL Analog

Pin Descriptions

2 X	/SS_EN_tri		
2 X		LAICHED	Latched select input to select spread spectrum amount at initial power up :
		IN	1 = -0.5% spread, M = -0.25%, 0 = Spread Off
	(1_25	IN	Crystal input, Nominally 25.00MHz.
3 X	<2	OUT	Crystal output.
4 V	/DDXTAL1.8	PWR	Power supply for XTAL, nominal 1.8V
5 V	/DDREF1.8	PWR	VDD for REF output. nominal 1.8V.
		LATCHED	
6 v\$	/SADR/REF1.8	I/O	Latch to select SMBus Address/1.8V LVCMOS copy of X1/REFIN pin
7 N	NC	N/A	No Connection.
8 G	GNDDIG	GND	Ground pin for digital circuitry
9 S	SCLK 3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
	/DDDIG1.8	PWR	1.8V digital power (dirty power)
	/DDIO	PWR	Power supply for differential outputs
			Active low input for enabling DIF pair 0. This pin has an internal pull-down.
13 v(OE0#	IN	1 =disable outputs, 0 = enable outputs
14 D	DIF0	OUT	Differential true clock output
	DIF0#	OUT	Differential Complementary clock output
	/DD1.8	PWR	Power supply, nominal 1.8V
	/DDIO	PWR	Power supply for differential outputs
	DIF1	OUT	Differential true clock output
	DIF1#	OUT	Differential Complementary clock output
	NC	N/A	No Connection.
20 11		IN/A	Active low input for enabling DIF pair 1. This pin has an internal pull-down.
21 v(/OE1#	IN	
			1 =disable outputs, 0 = enable outputs
	DIF2	OUT	Differential true clock output
23 D	DIF2#	OUT	Differential Complementary clock output
24 v(OE2#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down.
	10		1 =disable outputs, 0 = enable outputs
		N/A	No Connection.
	/DDA1.8	PWR	1.8V power for the PLL core.
	/DDIO	PWR	Power supply for differential outputs
	DIF3	OUT	Differential true clock output
29 D	DIF3#	OUT	Differential Complementary clock output
30 v(OE3#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down.
			1 =disable outputs, 0 = enable outputs
	/DD1.8	PWR	Power supply, nominal 1.8V
	/DDIO	PWR	Power supply for differential outputs
	DIF4	OUT	Differential true clock output
34 D	DIF4#	OUT	Differential Complementary clock output
35 v(/OE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down.
			1 =disable outputs, 0 = enable outputs
	DIF5	OUT	Differential true clock output
37 D	DIF5#	OUT	Differential Complementary clock output
38 v(OE5#	IN	Active low input for enabling DIF pair 5. This pin has an internal pull-down.
30 10	0_0#		1 =disable outputs, 0 = enable outputs
39 V	/DDIO	PWR	Power supply for differential outputs
			Input notifies device to sample latched inputs and start up on first high assertion. Low enters
40 ^0	CKPWRGD_PD#	IN	Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal
	_		pull-up resistor.
41 el	PAD	GND	Connect paddle to ground.




Test Loads

Alternate Differential Output Terminations

Rs	Zo	Units
33	100	Ohms
27	85	Onins

Driving LVDS inputs

	, v		
	Receiver has Receiver does not		
Component	termination	have termination	Note
R7a, R7b	10K ohm	140 ohm	
R8a, R8b	5.6K ohm	75 ohm	
Сс	0.1 uF	0.1 uF	
Vcm	1.2 volts	1.2 volts	

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9FGV0631C. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxx	Applies to all VDD pins	-0.5		2.5	V	1,2
Input Voltage	V _{IN}		-0.5		V_{DD} +0.5V	V	1, 3
Input High Voltage, SMBus	VIHSMB	SMBus clock and data pins			3.6V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

Electrical Characteristics–Current Consumption

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DDAOP}	VDDA, All outputs active @100MHz		6.1	9	mA	
Operating Supply Current	I _{DDOP}	All VDD, except VDDA and VDDIO, All outputs active @100MHz		10.5	15	mA	
	IDDIOOP	VDDIO, All outputs active @100MHz		22	30	mA	
Wake-on-LAN Current	I _{DDAPD}	VDDA, DIF outputs off, REF output running		0.4	1	mA	2
(CKPWRGD_PD# = '0' Byte 3, bit 5 = '1')	I _{DDPD}	All VDD, except VDDA and VDDIO, DIF outputs off, REF output running		5.5	8	mA	2
Dyte 3, bit 5 = 1)	I _{DDIOPD}	VDDIO, DIF outputs off, REF output running		0.04	0.1	mA	2
Powerdown Current	I _{DDAPD}	VDDA, all outputs off		0.4	1	mA	
(CKPWRGD_PD# = '0'	I _{DDPD}	All VDD, except VDDA and VDDIO, all outputs off		0.6	1	mA	
Byte 3, bit 5 = '0')		VDDIO, all outputs off		0.0003	0.1	mA	

¹ Guaranteed by design and characterization, not 100% tested in production.

² This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1)

Electrical Characteristics–DIF Output Duty Cycle, Jitter, and Skew Characteristics

TA = T_{AMB;} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.9	55	%	1,2
Skew, Output to Output	t _{sk3}	Averaging on, $V_T = 50\%$		37	50	ps	1,2
Jitter, Cycle to cycle	t _{jcyc-cyc}			12	50	ps	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

Electrical Characteristics–Input/Supply/Common Output Parameters–Normal Operating Conditions

TA = T_{AMB}: Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxx	Supply voltage for core, analog and single-ended LVCMOS outputs	1.7	1.8	1.9	V	
Output Supply Voltage	VDDIO	Supply voltage for differential Low Power Outputs	0.9975	1.05-1.8	1.9	V	
Ambient Operating	T _{AMB}	Commercial range	0	25	70	°C	
Temperature		Industrial range	-40	25	85	°C	
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	$0.75 V_{DD}$		V _{DD} + 0.3		
Input Mid Voltage	VIM	Single-ended tri-level inputs ('_tri' suffix)	$0.4 V_{DD}$	$0.5 V_{\text{DD}}$	$0.6 V_{DD}$	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus	-0.3		$0.25 V_{DD}$	V	
Output High Voltage	V _{IH}	Single-ended outputs, except SMBus. I _{OH} = -2mA	V _{DD} -0.45			V	
Output Low Voltage	V _{IL}	Single-ended outputs, except SMBus. I _{OL} = -2mA			0.45	V	
	I _{IN}	Single-ended inputs, V_{IN} = GND, V_{IN} = VDD	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs V _{IN} = 0 V; Inputs with internal pull-up resistors V _{IN} = VDD; Inputs with internal pull-down resistors	-20		20	uA	
Input Frequency	F _{in}	XTAL, or X1 input	23	25	27	MHz	
Pin Inductance	L _{pin}				7	nH	1
a	C _{IN}	Logic Inputs, except DIF IN	1.5		5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.6	1.8	ms	1,2
SS Modulation Frequency	f _{MOD}	Allowable Frequency (Triangular Modulation)	30	31.6	33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1	3	3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion		20	300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2
SMBus Input Low Voltage	VILSMB	V_{DDSMB} = 3.3V, see note 4 for V_{DDSMB} < 3.3V			0.6	V	
SMBus Input High Voltage	VIHSMB	V_{DDSMB} = 3.3V, see note 5 for V_{DDSMB} < 3.3V	2.1		3.6	V	4
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V _{DDSMB}		1.7		3.6	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			400	kHz	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Control input must be monotonic from 20% to 80% of input swing.

³ Time from deassertion until outputs are > 200mV.

⁴ For V_{DDSMB} < 3.3V, V_{IHSMB} >= 0.65x V_{DDSMB} .

Electrical Characteristics–DIF Low Power HCSL Outputs

TA = T_{AMB:} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on fast setting	1.8	2.7	4.4	V/ns	1,2,3
Siew fale	111	Scope averaging on slow setting	1.4	2.1	3.4	V/ns	1,2,3
Slew rate matching	∆Trf	Slew rate matching, Scope averaging on		4	20	%	1,2,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	793	850	mV	7
Voltage Low	V _{LOW}	averaging on)	-150	16	150	IIIV	7
Max Voltage	Vmax	Measurement on single ended signal using		831	1150	mV	7
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-95		IIIV	7
Vswing	Vswing	Scope averaging off	300	1555		mV	1,2,7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	429	550	mV	1,5,7
Crossing Voltage (var)	∆-Vcross	Scope averaging off		12	140	mV	1,6,7

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting □-Vcross to be smaller than Vcross absolute.

⁷ At default SMBus amplitude settings.

Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Common Clocked (CC) Architectures

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	Specification Limit	UNITS	NOTES
t _{jphPCleG1-CC}		PCIe Gen 1	21	25	35	86	ps (p-p)	1, 2, 3
		PCIe Gen 2 Low Band 10kHz < f < 1.5MHz (PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)	0.9	0.9	1.1	3	ps (rms)	1, 2
^l jphPCleG2-CC	t _{jphPCIeG2-CC} Phase Jitter, PLL Mode	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)	1.5	1.6	1.9	3.1	ps (rms)	1, 2
t _{jphPCleG3-CC}		PCIe Gen 3 (PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)	0.3	0.37	0.44	1	ps (rms)	1, 2
t _{jphPCleG4-CC}		PCIe Gen 4 (PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)	0.3	0.37	0.44	0.5	ps (rms)	1, 2

Notes on PCIe Filtered Phase Jitter Table

© 2019 Renesas Electronics Corporation

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Calculated from Intel-supplied Clock Jitter Tool, with spread on and off.

³ Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1⁻¹².

Electrical Characteristics-REF

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values		0		ppm	1,2
Clock period	T _{period}	25 MHz output		40		ns	2
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 1F, 20% to 80% of VDDREF	0.6	1	1.6	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 5F, 20% to 80% of VDDREF	0.9	1.4	2.2	V/ns	1,3
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = 9F, 20% to 80% of VDDREF	1.1	1.7	2.7	V/ns	1
Rise/Fall Slew Rate	t _{rf1}	Byte 3 = DF, 20% to 80% of VDDREF	1.1	1.8	2.9	V/ns	1
Duty Cycle	d _{t1X}	$V_T = VDD/2 V$	45	49.1	55	%	1,4
Duty Cycle Distortion	d _{tcd}	$V_T = VDD/2 V$	0	2	4	%	1,5
Jitter, cycle to cycle	t _{jcyc-cyc}	$V_T = VDD/2 V$		19.1	250	ps	1,4
Noise floor	t _{jdBc1k}	1kHz offset		-129.8	-105	dBc	1,4
Noise floor	t _{jdBc10k}	10kHz offset to Nyquist		-143.6	-115	dBc	1,4
Jitter, phase	t _{jphREF}	12kHz to 5MHz		0.63	1.5	ps (rms)	1,4

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz

³ Default SMBus Value

⁴ When driven by a crystal.

⁵ When driven by an external oscillator via the X1 pin, X2 should be floating.

Clock Periods–Differential Outputs with Spread Spectrum Disabled

		Measurement Window								
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2

Clock Periods–Differential Outputs with Spread Spectrum Enabled

			Measurement Window							
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the crystal input is tuned to exactly 14.31818MHz.

Clock Periods–Single-ended Outputs

			Measurement Window							
		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Center Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
REF	25.000	39.79880		39.99880	40.00000	40.00120		40.20120	ns	1,2

8

RENESAS

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

	Index Blo	ock W	rite Operation
Controlle	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	ig Byte N		
			ACK
0		×	
0		X Byte	0
0		Ø	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: Read/Write address is latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	Read C	Operation
Co	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
S	lave Address		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
RT	Repeat starT		
S	lave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		e	0
	0	X Byte	0
	0	×	0
	0		
	T		Byte N + X - 1
Ν	Not acknowledge		
Р	stoP bit		

JUNE 6, 2019

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Туре	0	1	Default	
Bit 7	DIF OE5	Output Enable	RW	Low/Low	Enabled	1	
Bit 6	DIF OE4	Output Enable	RW	Low/Low	Enabled	1	
Bit 5	Reserved						
Bit 4	DIF OE3	Output Enable	RW	Low/Low	Enabled	1	
Bit 3	DIF OE2	Output Enable	RW	Low/Low	Enabled	1	
Bit 2	DIF OE1	Output Enable	RW	Low/Low	Enabled	1	
Bit 1	Reserved						
Bit 0	DIF OE0	Output Enable	RW	Low/Low	Enabled	1	

1. A low on these bits will override the OE# pin and force the differential output Low/Low

SMBus Table: SS Readback and Control Register

Byte 1	Name	Control Function	Туре	0	1	Default
Bit 7	SSENRB1	SS Enable Readback Bit1	R	00' for SS_EN_tri =	0, '01' for SS_EN_tri	Latch
Bit 6	SSENRB1	SS Enable Readback Bit0	R	= 'M', '11 for S	S_EN_tri = '1'	Latch
Bit 5	SSEN_SWCNTRL	Enable SW control of SS	RW	Values in B1[7:6] control SS amount	Values in B1[4:3] control SS amount.	0
Bit 4	SSENSW1	SS Enable Software Ctl Bit1	RW ¹	00' = SS Off, '0'	1' = -0.25% SS,	0
Bit 3	SSENSW0	SS Enable Software Ctl Bit0	RW ¹	'10' = Reserved	, '11'= -0.5% SS	0
Bit 2		Reserved				1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01 = 0.7V	1
Bit 0	AMPLITUDE 0		RW	10= 0.8V	11 = 0.9V	0

1. B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Туре	0	1	Default	
Bit 7	SLEWRATESEL DIF5	Adjust Slew Rate of DIF5	RW	Slow Setting	Fast Setting	1	
Bit 6	SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	Slow Setting	Fast Setting	1	
Bit 5	Reserved						
Bit 4	SLEWRATESEL DIF3	Adjust Slew Rate of DIF3	RW	Slow Setting	Fast Setting	1	
Bit 3	SLEWRATESEL DIF2	Adjust Slew Rate of DIF2	RW	Slow Setting	Fast Setting	1	
Bit 2	SLEWRATESEL DIF1	Adjust Slew Rate of DIF1	RW	Slow Setting	Fast Setting	1	
Bit 1	Reserved						
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate of DIF0	RW	Slow Setting	Fast Setting	1	

SMBus Table: Nominal Vhigh Amplitude Control/ REF Control Register

Byte 3	Name	Control Function	Туре	0	1	Default	
Bit 7	REF	Slew Rate Control	RW	00 = Slowest	01 = Slow	0	
Bit 6	Bit 6			10 = Fast	11 = Faster	1	
Bit 5	REF Power Down Function	Wake-on-Lan Enable for REF	RW	REF does not run in	REF runs in Power	0	
DIUS			1	Power Down	Down		
Bit 4	REF OE	REF Output Enable	RW	Low	Enabled	1	
Bit 3		Reserved				1	
Bit 2	Reserved						
Bit 1	Reserved					1	
Bit 0		Reserved				1	

10

Byte 4 is Reserved

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R		0	
Bit 6	RID2	Revision ID	R	C rev :	0	
Bit 5	RID1	Revision ID	R	C IEV-	0	
Bit 4	RID0		R		1	
Bit 3	VID3		R			0
Bit 2	VID2		R	0001 = IDT		0
Bit 1	VID1	VENDOR ID	R			0
Bit 0	VID0		R			1

SMBus Table: Revision and Vendor ID Register

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Device Type1	Device Type	R	R 00 = FGx, 01 = DBx ZDB/FOB,		0
Bit 6	Device Type0	Device Type	R	10 = DMx, 1	0	
Bit 5	Device ID5		R			0
Bit 4	Device ID4		R	000110 binary or 06 hex		0
Bit 3	Device ID3	Device ID	R			0
Bit 2	Device ID2	Device ID	R		1	
Bit 1	Device ID1]	R	Ī		1
Bit 0	Device ID0		R			0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				0
Bit 6	Reserved				0	
Bit 5	Reserved				0	
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	er will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0
Bit 1	BC1		RW	= 8 b	ytes.	0
Bit 0	BC0		RW			0

Recommended Crystal Characteristics (3225 package)

PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	-	1
Frequency Tolerance @ 25°C	<u>±</u> 20	PPM Max	1
Frequency Stability, ref @ 25°C Over Operating Temperature Range	±20	PPM Max	1
Temperature Range (commercial)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	2
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (C _L)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

Notes:

1. FOX 603-25-150.

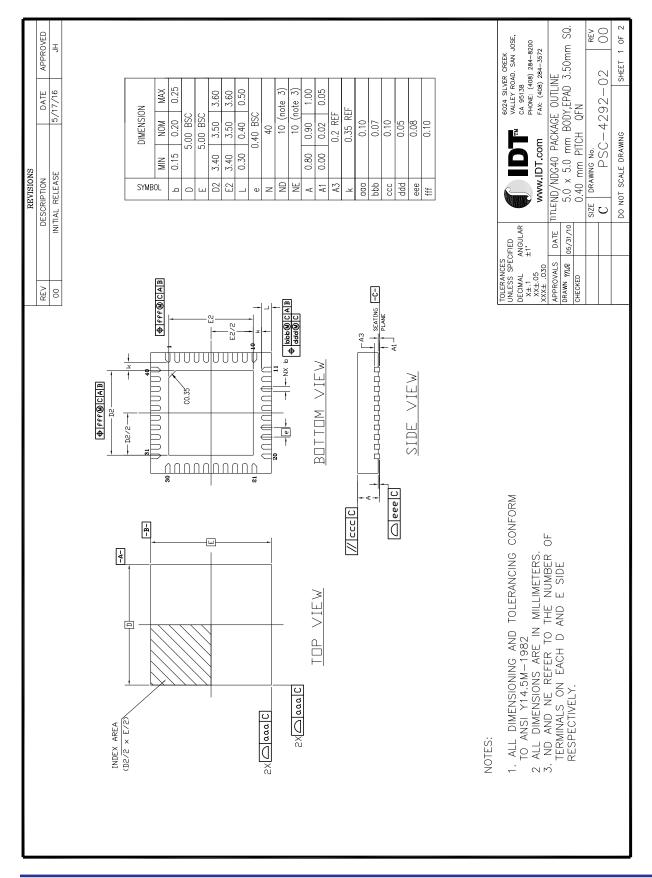
2. For I-temp, FOX 603-25-261.


© 2019 Renesas Electronics Corporation

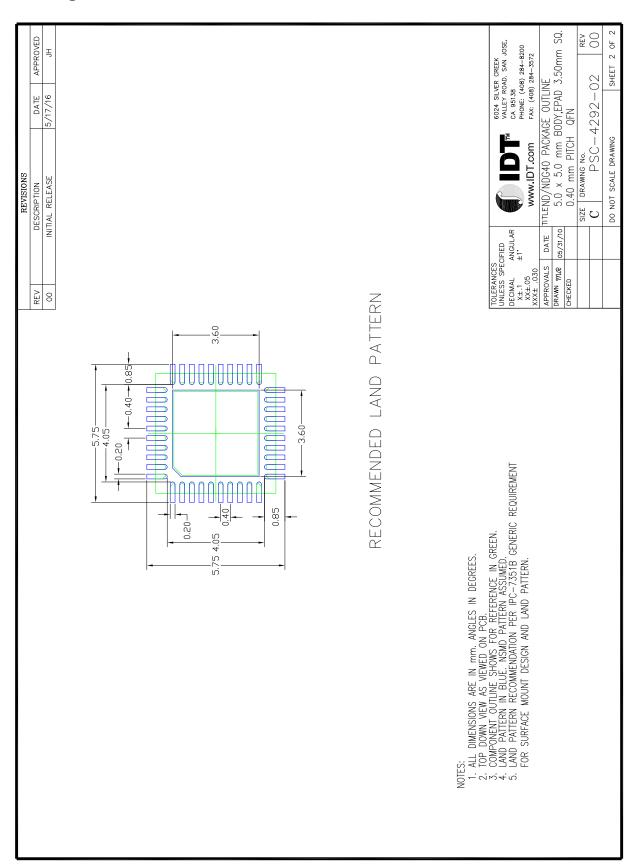
Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP.	UNITS	NOTES
	θ _{JC}	Junction to Case	NDG40	42	°C/W	1
	θ_{Jb}	Junction to Base		2.4	°C/W	1
Thermal Resistance	θ _{JA0}	Junction to Air, still air		39	°C/W	1
Thermal Resistance	θ _{JA1}	Junction to Air, 1 m/s air flow		33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		28	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board


Marking Diagrams

Notes:


- 1. Line 2: truncated part number.
- 2. "I" denotes industrial temperature.
- 3. "L" denotes RoHS compliant package.
- 4. "YYWW" is the last two digits of the year and week that the part was assembled.
- 5. "COO" denotes country of origin.
- 6. "LOT" is the lot number.

Package Outline and Dimensions (5 x 5 mm 40-VFQFPN)

13

Package Outline and Dimensions (5 x 5 mm 40-VFQFPN), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9FGV0631CKLF	Trays	40-pin VFQFPN	0 to +70° C
9FGV0631CKLFT	Tape and Reel	40-pin VFQFPN	0 to +70° C
9FGV0631CKILF	Trays	40-pin VFQFPN	-40 to +85° C
9FGV0631CKILFT	Tape and Reel	40-pin VFQFPN	-40 to +85° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

"C" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Issue Date	Description
	1. Updated front page text and block diagram.
	2. Updated pin out to remove references to VDD Suspend pins. Using the part with collapsible
	power supplies did not save power and complicated board design. NO pins were changed.
September 29, 2014	3. Updated SMBus Descriptions
	4. Simplified footnote 2 on PPM table.
	5. Updated all electrical tables
	6. Move to final
October 18, 2016	Removed IDT crystal part number
	Updated front page Gendes to reflect the PCIe Gen4 updates.
June 23, 2017	Updated Electrical Characteristics - Filtered Phase Jitter Parameters - PCle Common Clocked
	(CC) Architectures and added PCle Gen4 Data
June 6, 2019	Changed Input Current minimum and maximum values from -200/200uA to -20/20uA.

© 2019 Renesas Electronics Corporation

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.