# Description

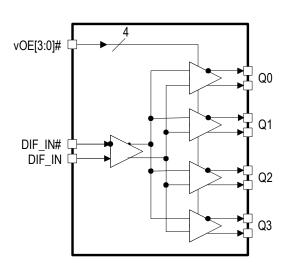
The 9INT31H400 is a 4-output very high-performance HCSL fanout buffer for high-performance interconnect applications. It can be used at speeds up to 350MHz and is compliant to the DB400H specification. There are four OE pins on the device, each controlling one output.

# **Typical Applications**

DB400H

# **Key Specifications**

- Qx output-to-output skew within a pair: 19ps (typical)
- Qx output-to-output skew across all outputs: 26ps (typical)
- RMS additive phase jitter: 61fs typical (12kHz to 20MHz at 156.25MHz)


# **Block Diagram**

### Features

- Extremely low additive phase jitter; supports DB400H requirements
- 3.3V operation; standard industry power supply
- 4 OE pins (1 for each output); easy control of clocks to CPU sockets
- HCSL-compatible input; supports popular devices
- 1MHz to 350MHz operating frequency; covers all popular Ethernet frequencies
- Space saving 4 × 4 mm 24-VFQFPN; minimal board space

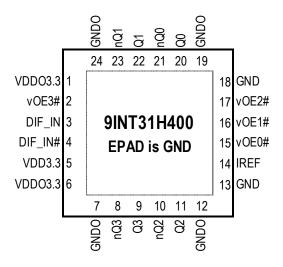
## **Output Features**

4 HCSL differential pairs



## **Power Management**

| DIF_IN      | OEx# Pin | Qx               | nQx              |
|-------------|----------|------------------|------------------|
| Running     | 1        | Low <sup>1</sup> | Low <sup>1</sup> |
| Running     | 0        | Running          | Running          |
| Not Running | Х        | Х                | Х                |


<sup>1</sup> The outputs are tri-stated, and the termination networks pulls them low.

### **Power Connections**

| Pin N           | umber      | Description           |  |  |
|-----------------|------------|-----------------------|--|--|
| V <sub>DD</sub> | GND        | — Description         |  |  |
| 5               | 25         | Input receiver analog |  |  |
| 5               | 13,18      | Internal circuitry    |  |  |
| 1,6             | 7,12,19,24 | DIF outputs           |  |  |

## **Pin Assignments**

Figure 1. Pin Assignments for 4 × 4 mm 24-VFQFPN Package - Top View



### 4 x 4 mm 24-VFQFPN, 0.5mm pitch

^ prefix indicates internal 120kOhm pull-up resistor v prefix indicates internal 120kOhm pull down-resistor

# **Pin Descriptions**

Table 1. Pin Descriptions

| Number | Name    | Туре   | Description                                                                                                                                                                                                                                               |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | VDDO3.3 | Power  | Power supply for outputs, nominal 3.3V.                                                                                                                                                                                                                   |
| 2      | vOE3#   | Input  | Active low input for enabling output 3. This pin has an internal $120k\Omega$ pull-down resistor.<br>1 = disable outputs, 0 = enable outputs.                                                                                                             |
| 3      | DIF_IN  | Input  | HCSL True input.                                                                                                                                                                                                                                          |
| 4      | DIF_IN# | Input  | HCSL Complementary input.                                                                                                                                                                                                                                 |
| 5      | VDD3.3  | Power  | Power supply, nominal 3.3V.                                                                                                                                                                                                                               |
| 6      | VDDO3.3 | Power  | Power supply for outputs, nominal 3.3V.                                                                                                                                                                                                                   |
| 7      | GNDO    | GND    | Ground pin for outputs.                                                                                                                                                                                                                                   |
| 8      | nQ3     | Output | Inverting output of differential pair 3.                                                                                                                                                                                                                  |
| 9      | Q3      | Output | Non-inverting output of differential pair 3.                                                                                                                                                                                                              |
| 10     | nQ2     | Output | Inverting output of differential pair 2.                                                                                                                                                                                                                  |
| 11     | Q2      | Output | Non-inverting output of differential pair 2.                                                                                                                                                                                                              |
| 12     | GNDO    | GND    | Ground pin for outputs.                                                                                                                                                                                                                                   |
| 13     | GND     | GND    | Ground pin.                                                                                                                                                                                                                                               |
| 14     | IREF    | Output | This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. $475\Omega$ is the standard value for $100\Omega$ differential impedance. Other impedances require different values. |
| 15     | vOE0#   | Input  | Active low input for enabling output 0. This pin has an internal $120k\Omega$ pull-down resistor.<br>1 = disable outputs, 0 = enable outputs.                                                                                                             |
| 16     | vOE1#   | Input  | Active low input for enabling output 1. This pin has an internal $120k\Omega$ pull-down resistor.<br>1 = disable outputs, 0 = enable outputs.                                                                                                             |
| 17     | vOE2#   | Input  | Active low input for enabling output 2. This pin has an internal $120k\Omega$ pull-down resistor.<br>1 = disable outputs, 0 = enable outputs.                                                                                                             |
| 18     | GND     | GND    | Ground pin.                                                                                                                                                                                                                                               |
| 19     | GNDO    | GND    | Ground pin for outputs.                                                                                                                                                                                                                                   |
| 20     | Q0      | Output | Non-inverting output of differential pair 0.                                                                                                                                                                                                              |
| 21     | nQ0     | Output | Inverting output of differential pair 0.                                                                                                                                                                                                                  |
| 22     | Q1      | Output | Non-inverting output of differential pair 1.                                                                                                                                                                                                              |
| 23     | nQ1     | Output | Inverting output of differential pair 1.                                                                                                                                                                                                                  |
| 24     | GNDO    | GND    | Ground pin for outputs.                                                                                                                                                                                                                                   |
| 25     | EPAD    | GND    | Connect to Ground.                                                                                                                                                                                                                                        |

## **Absolute Maximum Ratings**

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9INT31H400 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 2. Absolute Maximum Ratings

| Parameter            | Symbol             | Conditions                  | Minimum | Typical | Maximum               | Units | Notes |
|----------------------|--------------------|-----------------------------|---------|---------|-----------------------|-------|-------|
| Supply Voltage       | V <sub>DDx</sub>   |                             |         |         | 4.6                   | V     | 1,2   |
| Input Low Voltage    | V <sub>IL</sub>    |                             | GND-0.5 |         |                       | V     | 1     |
| Input High Voltage   | V <sub>IH</sub>    | Except for SMBus interface. |         |         | V <sub>DD</sub> + 0.5 | V     | 1,3   |
| Input High Voltage   | V <sub>IHSMB</sub> | SMBus clock and data pins.  |         |         | 5.5                   | V     | 1     |
| Storage Temperature  | Ts                 |                             | -65     |         | 150                   | °C    | 1     |
| Junction Temperature | Tj                 |                             |         |         | 125                   | °C    | 1     |
| Input ESD Protection | ESD prot           | Human Body Model.           | 2500    |         |                       | V     | 1     |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Operation under these conditions is neither implied nor guaranteed.

<sup>3</sup> Not to exceed 4.6V.

### **Electrical Characteristics**

T<sub>AMB</sub> = T<sub>COM</sub> or T<sub>IND</sub> unless otherwise indicated. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

Table 3. DIF\_IN Clock Input Parameters

| Parameter                      | Symbol             | Conditions                              | Minimum | Typical | Maximum | Units | Notes |
|--------------------------------|--------------------|-----------------------------------------|---------|---------|---------|-------|-------|
| Input Crossover Voltage-DIF_IN | V <sub>CROSS</sub> | Crossover voltage.                      | 200     |         | 900     | mV    | 1     |
| Input Swing–DIF_IN             | V <sub>SWING</sub> | Differential value.                     | 300     |         |         | mV    | 1     |
| Input Slew Rate-DIF_IN         | dv/dt              | Measured differentially.                | 0.4     |         | 8       | V/ns  | 1,2   |
| Input Leakage Current          | I <sub>IN</sub>    | $V_{IN} = V_{DD}$ , $V_{IN} = GND$ .    | -5      |         | 5       | μA    |       |
| Input Duty Cycle               | d <sub>tin</sub>   | Measurement from differential waveform. | 45      |         | 55      | %     | 1     |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Slew rate measured through ±75mV window centered around differential zero.

### Table 4. Input/Supply/Common Parameters

| Parameter                        | Symbol                | Conditions                                                                                                                                          | Minimum   | Typical | Maximum               | Units  | Notes |
|----------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----------------------|--------|-------|
| Supply Voltage                   | V <sub>DDx</sub>      | Supply voltage.                                                                                                                                     | 3.135     | 3.3     | 3.465                 | V      |       |
| Ambient Operating<br>Temperature | T <sub>AMB</sub>      | Industrial range (T <sub>IND</sub> ).                                                                                                               | -40       |         | 85                    | °C     |       |
| Input High Voltage               | V <sub>IH</sub>       | Single-ended inputs.                                                                                                                                | 2         |         | V <sub>DD</sub> + 0.3 | V      |       |
| Input Low Voltage                | V <sub>IL</sub>       | Single-ended inputs.                                                                                                                                | GND - 0.3 |         | 0.8                   | V      |       |
|                                  | I <sub>IN</sub>       | Single-ended inputs, $V_{IN}$ = GND, $V_{IN}$ = $V_{DD.}$                                                                                           | -5        |         | 5                     | μA     |       |
| Input Current                    | I <sub>INP</sub>      | Single-ended inputs.<br>$V_{IN} = 0V$ ; inputs with internal pull-up resistors.<br>$V_{IN} = V_{DD}$ ; inputs with internal pull-down<br>resistors. | -50       |         | 50                    | μA     |       |
| Input Frequency                  | F <sub>IN</sub>       | V <sub>DD</sub> = 3.3V.                                                                                                                             | 1         |         | 350                   | MHz    |       |
| Pin Inductance                   | L <sub>pin</sub>      |                                                                                                                                                     |           |         | 7                     | nH     | 1     |
|                                  | C <sub>IN</sub>       | Logic inputs, except DIF_IN.                                                                                                                        | 1.5       |         | 5                     | pF     | 1     |
| Capacitance                      | C <sub>INDIF_IN</sub> | DIF_IN differential clock inputs.                                                                                                                   | 1.5       |         | 2.7                   | pF     | 1,4   |
|                                  | C <sub>OUT</sub>      | Output pin capacitance.                                                                                                                             |           |         | 6                     | pF     | 1     |
| Clk Stabilization                | t <sub>STAB</sub>     | From V <sub>DD</sub> power-up and after input clock stabilization or deassertion of PD# to 1st clock.                                               |           |         | 0.08                  | ms     | 1,2   |
| OE# Latency                      | t <sub>LATOE</sub> #  | DIF start after OE# deassertion.<br>DIF stop after OE# deassertion.                                                                                 | 6         |         | 8                     | clocks | 1,2,3 |
| Tdrive_PD#                       | t <sub>DRVPD</sub>    | DIF output enable after PD# deassertion.                                                                                                            |           |         | 75                    | μs     | 1,3   |
| Tfall                            | t <sub>F</sub>        | Fall time of control inputs.                                                                                                                        |           |         | 5                     | ns     | 2     |
| Trise                            | t <sub>R</sub>        | Rise time of control inputs.                                                                                                                        |           |         | 5                     | ns     | 2     |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

 $^2$  Control input must be monotonic from 20% to 80% of input swing.

<sup>3</sup> Time from deassertion until outputs are > 400mV.

<sup>4</sup> DIF\_IN input.

### Table 5. Qx HCSL/LP-HCSL Outputs

T<sub>AMB</sub> = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.

| Parameter              | Symbol                       | Conditions                                                            | Minimum | Typical | Maximum | Industry<br>Limits | Units | Notes |
|------------------------|------------------------------|-----------------------------------------------------------------------|---------|---------|---------|--------------------|-------|-------|
| Slew Rate              | dV/dt                        | Scope averaging on.                                                   | 1.4     | 1.9     | 2.5     | 0.6–4              | V/ns  | 1,2,3 |
| Slew Rate Matching     | ∆dV/dt                       | Single-ended<br>measurement.                                          |         | 7       | 19      | 20                 | %     | 1,4   |
| Maximum Voltage        | V <sub>MAX</sub>             | Measurement on                                                        |         | 742     | 850     | 1150               | mV    |       |
| Minimum Voltage        | V <sub>MIN</sub>             | single-ended signal using<br>absolute value (scope<br>averaging off). | -100    | -29     |         | -300               | mV    |       |
| Crossing Voltage (abs) | V <sub>CROSS_ABS</sub>       | Scope averaging off.                                                  | 300     | 348     | 400     | 250–550            | mV    | 1,5   |
| Crossing Voltage (var) | $\Delta$ -V <sub>CROSS</sub> | Scope averaging off.                                                  |         | 9       | 60      | 140                | mV    | 1,6   |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Measured from differential waveform.

<sup>3</sup> Slew rate is measured through the V<sub>SWING</sub> voltage range centered around differential 0 V. This results in a ±150mV window around differential 0V.

<sup>4</sup> Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

<sup>5</sup> V<sub>CROSS</sub> is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

<sup>6</sup> The total variation of all V<sub>CROSS</sub> measurements in any particular system. Note that this is a subset of V<sub>CROSS\_MIN/MAX</sub> (V<sub>CROSS</sub> absolute) allowed. The intent is to limit V<sub>CROSS</sub> induced modulation by setting Δ-V<sub>CROSS</sub> to be smaller than V<sub>CROSS</sub> absolute.

#### Table 6. Current Consumption

 $T_A = T_{IND}$ ; supply voltage  $V_{DDX} = 3.3V \pm 5\%$ ; see Test Loads for loading conditions.

| Parameter                   | Symbol                 | Conditions                                                      | Minimum | Typical | Maximum | Units |
|-----------------------------|------------------------|-----------------------------------------------------------------|---------|---------|---------|-------|
| Operating                   | I <sub>DD3.30P</sub>   | All outputs running at 350MHz, $C_L = 2pF$ ; Zo = 85 $\Omega$ . |         | 95      | 117     | mA    |
| Operating<br>Supply Current | I <sub>DD3.3IDLE</sub> | All outputs stopped, input clock running at 350MHz or stopped.  |         | 35      | 43      | mA    |

### Table 7. Qx Output Duty Cycle, Jitter, and Skew Characteristics

 $T_A = T_{IND}$ ; supply voltage  $V_{DDX} = 3.3V \pm 5\%$ ; see Test Loads for loading conditions.

| Parameter                           | Symbol                   | Conditions                         | Minimum | Typical | Maximum | Units | Notes |
|-------------------------------------|--------------------------|------------------------------------|---------|---------|---------|-------|-------|
| Duty Cycle Distortion               | t <sub>DCD</sub>         | Measured differentially.           | -1      | 0       | 1       | %     | 1,2   |
| Skew, Input to Output               | t <sub>PD</sub>          | V <sub>T</sub> = 50%.              | 2.3     | 2.6     | 3.1     | ps    | 1     |
| Skew, Output to Output              | t <sub>SK3</sub>         | Across all outputs, $V_T = 50\%$ . |         | 13      | 40      | ps    | 1     |
| Jitter, Cycle to Cycle,<br>Additive | t <sub>jcyc-cycadd</sub> | Additive.                          |         | 1.4     | 5       | ps    | 1,3   |

<sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

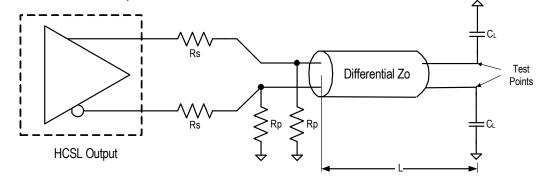
<sup>2</sup> Duty cycle distortion is the difference in duty cycle between the output and the input clock.

<sup>3</sup> Measured from differential waveform.

#### Table 8. Additive Phase Jitter

 $T_A = T_{IND}$ ; supply voltage  $V_{DDX} = 3.3V \pm 5\%$ ; see Test Loads for loading conditions.

| Parameter             | Symbol           | Conditions                                        | Minimum | Typical | Maximum | Units       | Notes |
|-----------------------|------------------|---------------------------------------------------|---------|---------|---------|-------------|-------|
| Additive Phase Jitter | t <sub>jph</sub> | All outputs running at 156.25MHz, 12kHz to 20MHz. |         | 62      | 75      | fs<br>(rms) | 1,2,3 |


<sup>1</sup> Applies to all outputs.

<sup>2</sup> Signal source is Wenzel.

<sup>3</sup> For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter) ^ 2 - (input jitter) ^ 2].

## Test Loads

HCSL Differential Output Test Load - Source Terminated



#### Table 9. Differential Output Termination

| DIF Zo (Ω) | L (in) | C <sub>L</sub> (pF) | lref (Ω) | Rs (Ω) | Rp (Ω)       |
|------------|--------|---------------------|----------|--------|--------------|
| 100        | 5      | 2                   | 475      | 33     | 50           |
| 85         | 5      | 2                   | 412      | 27     | 42.2 or 43.2 |

## **Thermal Characteristics**

| Table 10. Thermal Characteristics | Table 10. | Thermal | Characteristics | 1 |
|-----------------------------------|-----------|---------|-----------------|---|
|-----------------------------------|-----------|---------|-----------------|---|

| Parameter          | Symbol           | Conditions                       | Typical Value | Units |
|--------------------|------------------|----------------------------------|---------------|-------|
| Thermal Resistance | $\theta_{JC}$    | Junction to case.                | 61.7          | °C/W  |
|                    | θ <sub>Jb</sub>  | Junction to base.                | 5.4           | °C/W  |
|                    | θ <sub>JA0</sub> | Junction to Air, still air.      | 50.1          | °C/W  |
|                    | $\theta_{JA1}$   | Junction to Air, 1 m/s air flow. | 43.1          | °C/W  |
|                    | θ <sub>JA3</sub> | Junction to Air, 3 m/s air flow. | 40.7          | °C/W  |
|                    | $\theta_{JA5}$   | Junction to Air, 5 m/s air flow. | 39.4          | °C/W  |

<sup>1</sup> EPAD soldered to board.

## Package Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

www.idt.com/document/psc/nlnlg24p1-package-outline-40-x-40-mm-body-05-mm-pitch-qfn-epad-size-245-x-245-mm

## **Marking Diagram**

| H400I<br>YYWW\$ | <ol> <li>Line 1 is the truncated part number.</li> <li>"YYWW" is the last digits of the year and week that the part was assembled.</li> <li>"\$" denotes the mark code.</li> <li>"I" denotes industrial temperature.</li> </ol> |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ● LOT           |                                                                                                                                                                                                                                 |

## **Ordering Information**

| Orderable Part Number | Package                         | Carrier Type  | Temperature   |
|-----------------------|---------------------------------|---------------|---------------|
| 9INT31H400NLGI        | 4 × 4 mm, 0.5mm pitch 24-VFQFPN | Tray          | -40° to +85°C |
| 9INT31H400NLGI8       | 4 × 4 mm, 0.5mm pitch 24-VFQFPN | Tape and Reel | -40° to +85°C |

### **Revision History**

| Revision Date  | Description of Change |  |
|----------------|-----------------------|--|
| August 9, 2018 | Initial release.      |  |



Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

### Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

#### Tech Support www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

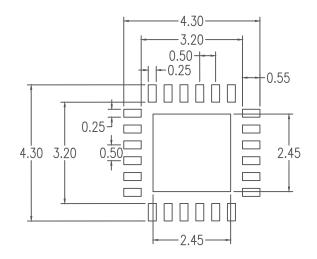
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.



# 24-VFQFPN, Package Outline Drawing

4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.45 x 2.45 mm NLG24P1, PSC-4192-01, Rev 02, Page 1




© Integrated Device Technology, Inc.





4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.45 x 2.45 mm NLG24P1, PSC-4192-01, Rev 02, Page 2



#### RECOMMENDED LAND PATTERN DIMENSION

NOTES:

- ALL DIMENSIONS ARE IN MM. ANGLES IN DEGREES.
   TOP DOWN VIEW, AS VIEWED ON PCB.
   LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

| Package Revision History |         |                                                           |  |  |
|--------------------------|---------|-----------------------------------------------------------|--|--|
| Date Created             | Rev No. | Description                                               |  |  |
| Sept 9, 2016             | Rev 01  | Add Chamfer on Epad                                       |  |  |
| Sept 13, 2018            | Rev 02  | New Format, Recalculate Land Pattern Change QFN to VFQFPN |  |  |