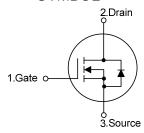


UNISONIC TECHNOLOGIES CO., LTD

9N100 **Preliminary Power MOSFET**

9A, 1000V N-CHANNEL POWER MOSFET

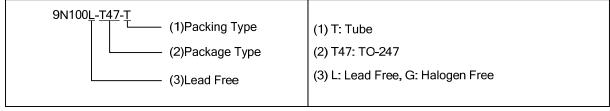
DESCRIPTION

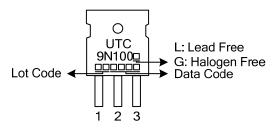

The UTC 9N100 is an N-channel mode power MOSFET using UTC's advanced technology to provide costumers with planar stripe and DMOS technology. This technology allows a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC 9N100 is generally applied in high efficiency switch mode power supplies.

FEATURES

- * $R_{DS(ON)}$ <1.7 Ω @ V_{GS} =10V
- * Fast Switching Speed
- * 100% Avalanche Tested
- * Improved dv/dt Capability


SYMBOL


ORDERING INFORMATION

Ordering Number		Daakana	Pin Assignment			Dealine	
Lead Free	Halogen Free	Package	1	2	3	Packing	
9N100L-T47-T	9N100G-T47-T	TO-247	G	D	S	Tube	

D: Drain Pin Assignment: G: Gate S: Source Note:

MARKING INFORMATION

TO-247

www.unisonic.com.tw 1 of 5

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Drain to Source Voltage	V_{DSS}	1000	V
Gate to Source Voltage	V_{GSS}	±30	V
Continuous Drain Current (T _C =25°C)	I _D	9	Α
Pulsed Drain Current (Note 1)	I _{DM}	36	Α
Avalanche Current (Note 1)	I _{AR}	9	Α
Single Pulsed Avalanche Energy (Note 2)	E _{AS}	600	mJ
Peak Diode Recovery dv/dt (Note 3)	dv/dt	4.0	V/ns
Power Dissipation (T _C =25°C)	-	160	W
Linear Derating Factor above T _C =25°C	P _D	1.28	W/°C
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55~+150	°C

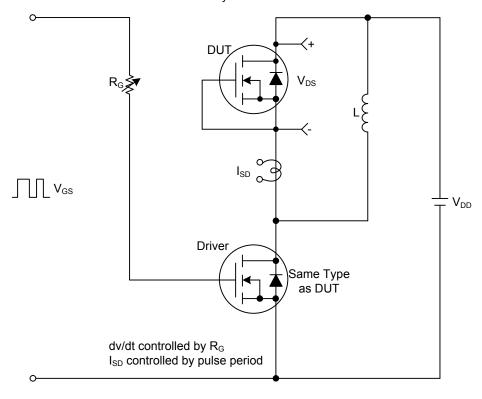
- Note: 1. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 2. L=14.75mH, I_{AS} =9A, V_{DD} = 50V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
 - 3. $I_{SD} \le 9A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C
 - 4. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

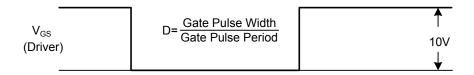
■ THERMAL DATA

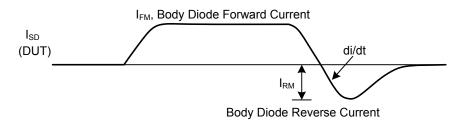
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	50	°C/W	
Junction to Case	θ_{JC}	0.78	°C/W	

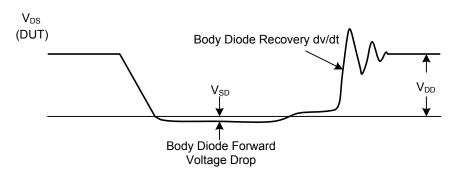
■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I_D =250 μ A	1000			٧
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	I _D =250μA, Referenced to 25°C		1.4		V/°C
Drain Source Leakage Current	I _{DSS}	V _{DS} =1000V, V _{GS} =0V			10	μΑ
Drain-Source Leakage Current		V _{DS} =800V, T _C =125°C			100	μΑ
Gate-Source Leakage Current	I _{GSS}	V_{DS} =0V , V_{GS} =±30V			±100	nΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	3.0		5.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4.5A		1500	1700	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			960	3220	pF
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		160	255	pF
Reverse Transfer Capacitance	C_{RSS}			20	24	pF
SWITCHING PARAMETERS (Note 1, Note 2)					
Total Gate Charge	Q_G			225	260	nC
Gate-Source Charge	Q_GS	V _{DS} =120V, V _{GS} =10V, I _D =9A		22		nC
Gate-Drain Charge	Q_GD			58		nC
Turn-ON Delay Time	t _{D(ON)}			100	110	ns
Turn-ON Rise Time	t_{R}	V -20V L -1A B -250		170	200	ns
Turn-OFF Delay Time	t _{D(OFF)}	V_{DD} =30V, I_{D} =1A, R_{G} =25 Ω		350	400	ns
Turn-OFF Fall Time	t⊧			175	190	ns
SOURCE- DRAIN DIODE RATINGS AND CH	IARACTERIS	TICS				
Maximum Body-Diode Continuous Current	Is				9	Α
Maximum Body-Diode Pulsed Current	I _{SM}				36	Α
Drain-Source Diode Forward Voltage	V_{SD}	I _S =9A, V _{GS} =0V			1.4	V

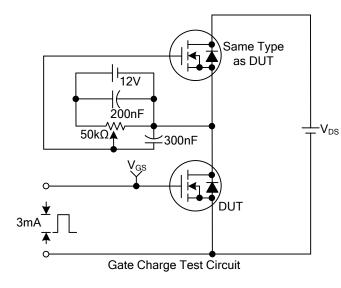

Note: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

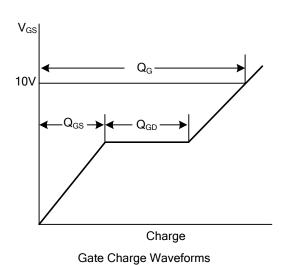

2. Essentially independent of operating temperature

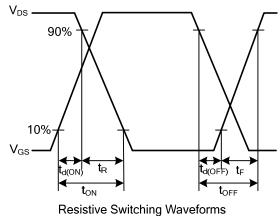


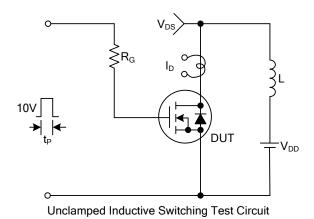

■ TEST CIRCUITS AND WAVEFORMS

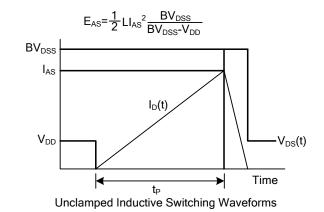
Peak Diode Recovery dv/dt Test Circuit & Waveforms






■ TEST CIRCUITS AND WAVEFORMS(Cont.)





R_G R_D V_{DD}

Resistive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

