

DESCRIPTION

A4804 is a series of high precision voltage detector with ultra low current consumption (500nA typ. at $V_{DD} = 3.0V$). It can work at very low voltage, which makes it perfect for system reset.

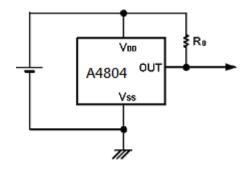
A4804 is composed of high precision voltage reference, comparator, output driver and resistor array. Internally preset detect voltage has a low temperature drift and requires no external trimming.

N-channel open-drain is available.

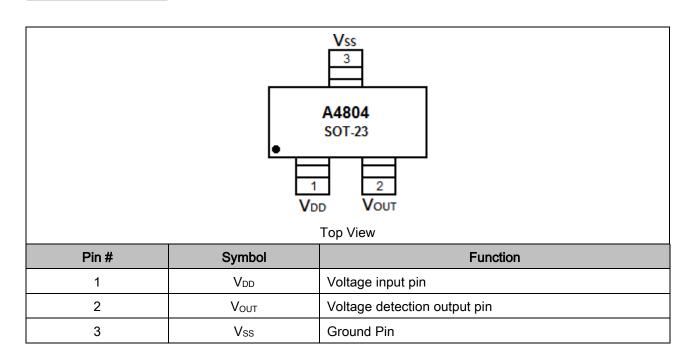
A4804 is available in SOT-23 package.

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	E3	A4804E3R-XXN	
		A4804E3VR-XXN	
	XX: Output Voltage		
	30=3.0V		
Note	N: N-channel open drain		
	V: Halogen free Package		
	R: Tape & Reel		
AiT provides all RoHS products			
Suffix " V " means Halogen free Package			


FEATURES

- ► High-precision detection Voltage: ±3%
- Detection Voltage: 0.9V~6.0V (in 0.1V step)
- Precise hysteresis: 4% typ.
- Operating Voltage range: 0.7V~10V
- Ultra-low current consumption: 500nA typ.
 (at V_{DD} = 3.0V)
- Available in SOT-23 package


APPLICATION

- Power monitor for portable equipment such as PDA, DSC, Mobile phone, Notebook, MP3
- CPU and Logic Circuit Reset
- Battery Checker
- Battery Back-up Circuit
- Power Failure Detector

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

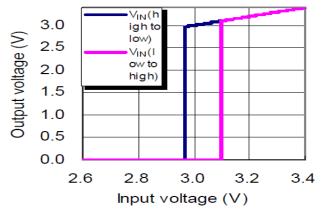
Input Voltage		-0.3V ~ 10V
Output Voltage Range		-0.3V ~ 12V
Maximum Output Current		70mA
T _A , Ambient Temperature		-40°C ~ 85°C
P _D , Power Dissipation SOT-23		250mW
T _S , Storage Temperature Range		-40°C ~ 150°C
Lead Temperature & Time		260°C,10s

Stresses beyond may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

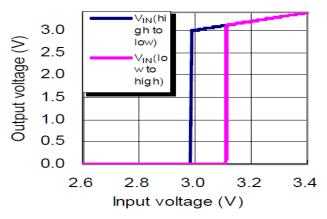
RECOMMENDED WORK CONDITIONS

Parameter	Min	Recommended	Max	Unit
Input Voltage Range	0.7	-	10	V
Ambient Temperature	-40	25	85	°C

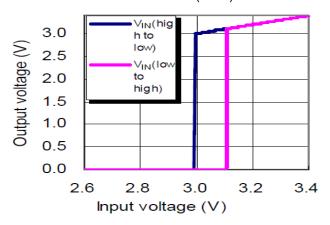
ELECTRICAL CHARACTERISTICS


 T_{OPT} = 25°C, Unless otherwise specified.

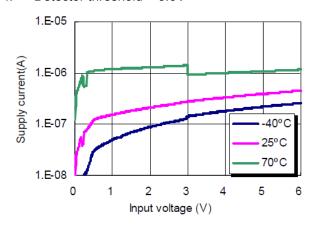
Parameter	Symbol	Conditions		Min	Тур.	Max	Unit
Detector Threshold	-V _{DET}		3.0V	2.91	3.00	3.09	V
Detector Threshold Hysteresis	VHYS		3.0V	0.06	0.12	0.18	V
Current Consumption	I _{SS}	V _{DD} = 5.0V	3.0V	-	0.50	2.50	uA
Output Current	Іоит	$V_{DS} = 0.05V, V_{DD} = 0.7V$	3.0V	0.01	0.05	-	mA
Maximum Operating Voltage	V_{DDH}			-	-	10	>
Minimum Operating Voltage	V _{DDL}	DL .		-	0.5	-	V
Output Delay Time	T _{PLH}			-	-	20	us


TYPICAL PERFORMANCE CHARACTERISTICS

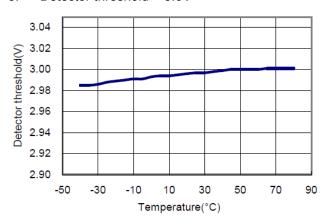
Output Voltage VS. Input Voltage


1. Detector threshold = 3.0V (- 40° C)

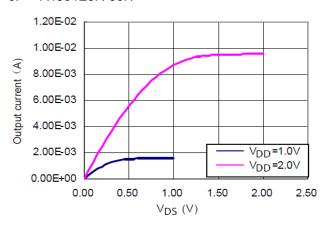
2. Detector threshold = 3.0V (25°C)



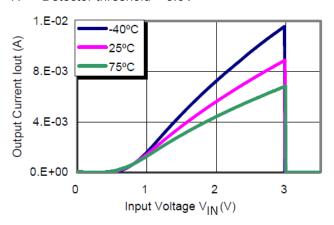
3. Detector threshold = 3.0V (70°C)


Supply current VS. Input voltage

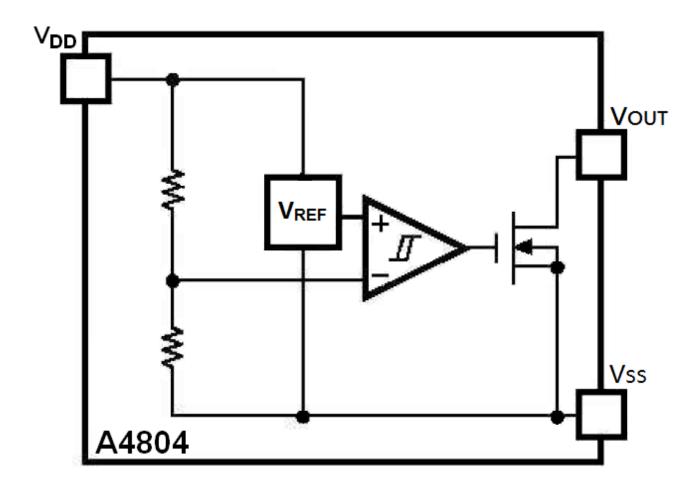
4. Detector threshold = 3.0V


Detector Threshold Hysteresis VS. Temperature

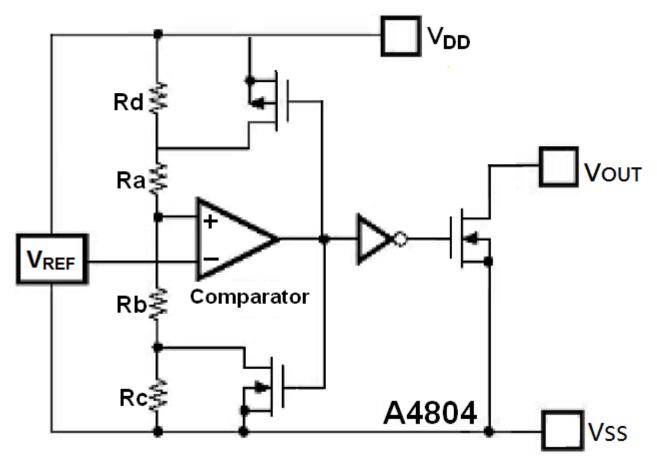
Detector threshold = 3.0V


Driver Output Current VS. VDS

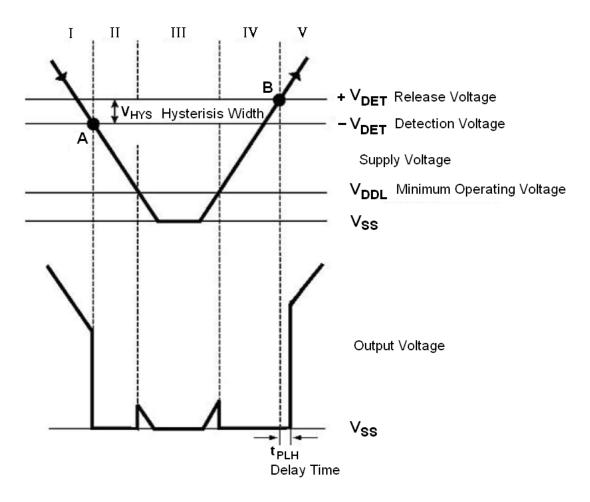
A4804E3R-30N



Driver Output Current vs. Input Voltage

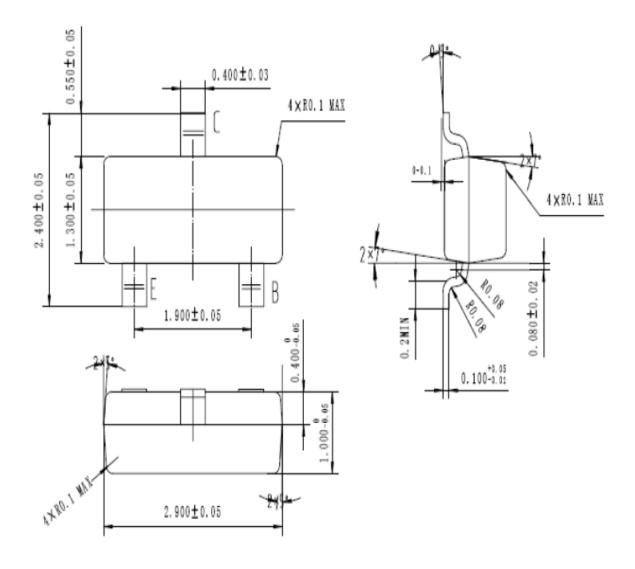

7. Detector threshold = 3.0V

BLOCK DIAGRAM



DETAILED INFORMATION

In A4804, a high precision low temperature coefficient reference voltage is applied to the negative input of a comparator. Input voltage, divided by resistor array of Ra, Rb and Rc, is applied to the positive input of the comparator. Output of the comparator controls a pair of NMOS and PMOS switches, generating the hysteresis. Output of the comparator passes a series of buffer to drive the output NMOS.


OUTPUT ACTION

No.	Operation status	Output status
1	V _{DD} >- V _{DET}	Output voltage is equal to the supply voltage
II	V _{DD} drops below - V _{DET}	Output voltage equals to GND level
Ш	V _{DD} drops further below V _{DDL}	Output voltage is undefined
IV	V _{DD} rises above V _{DDL}	Output voltage equals to GND level
V	V _{DD} rises above + V _{DET}	Output voltage equals to supply voltage, $V_{HYS} = (+V_{DET}) - (-V_{DET})$

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.