开关式内置功率管、单节 2.0A 锂电池充电管理芯片

描述

A6100 是开关式、单节锂电池充电管理芯片,采用峰值电流模控制的 BUCK 拓扑结构,最大充电电流可达 2.0A. 恒流充电电流、满充电压可通过外接电阻调整. A6100 外接 LED 指示灯指示电池充电状态.

A6100 采用 EMSOP-10 封装.

应用

- 平板电脑
- 手持设备
- 移动电源

特点

- USB、适配器兼容,输入限流
- 电池低压提示
- 充饱电压精度 0.5%
- 功率管内置
- 最大充电电流 2.0A
- 满充电压可调
- 恒流充电电流外接电阻可调
- 软启动
- 采用 EMSOP-10 封装,底部带散热盘

典型应用

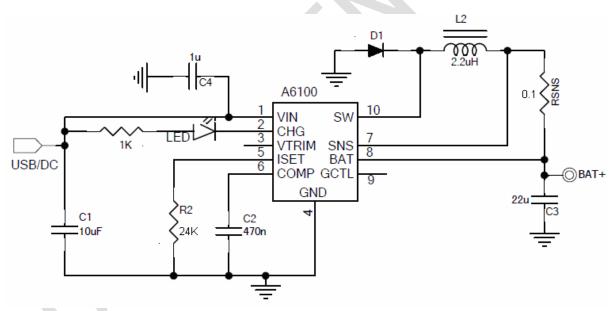


图 1、典型应用图

V1.1 NOV.2012 1 A6100

额定数值

- 输入电压......6.5V
- BAT,SNS,SW.....-0.3V to 6.5V
- ISET,VTRIM,CHG,COMP,GCTL.....-0.3V to 6.5V
- 工作温度范围......-20℃~70℃
- 储藏温度......-60℃~125℃
- Lead Temperature...... 260°C

推荐工作条件

	最小	典型	最大	单位
输入电压,管脚 VIN	4.5	5.0	6.5 ⁽¹⁾	V
工作温度	-20		70	$^{\circ}$ C

(1) 开关噪声导致的电压尖峰不要超过管脚 PVIN 和 AVIN 的最大额定值,如果输入噪声过大可适当加大输入电容。

管脚定义

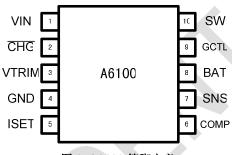


图 2. A6100 管脚定义

表 1:管脚功能定义

管脚序号	名称	I/O	描述
1	VIN	1	模拟电源输入
2	CHG	0	漏极输出,外接红色 LED 灯,正常充电下拉
3	VTRIM	0	充饱电压微调管脚
4	GND	7	地
5	ISET	0	与地之间外接电阻,设置恒流充电电流
6	COMP	0	补偿管脚
7	SNS	I	充电电流检测正端输入. 在 SNS 与 BAT 管脚之间连接检流电阻 R _{SNS}
8	BAT	I	电池输入端
9	GCTL	0	低压指示管脚,电池电压低于 3.2V 输入高电平
10	SW	0	开关管输出

电学参数

 V_{IN} =5V, T_A =25°C.

参数	符号	条件	最小	典型	最大	单位
输入电压范围	V _{IN}		4.5		6.5	V
静态电流	IQ				3	mA
电池反灌电流		V _{BAT} =4.2V		12		uA
电压调整参数						
充饱电压	V_{REG}		4.16	4.19	4.22	V
恒流充电						
恒流充电电流范围	I _{CC}	3.2V <v<sub>BAT<4.1V</v<sub>	200		2000	mA
检流电阻 R _{SNS} 上的电压降精度 ⁽¹⁾	V_{SNS}	0.05V <v<sub>SNS<0.2V</v<sub>	-10%		+10%	
恒流充电设置电压	V _{ISET}			1.5		V
恒流充电电流设定比例	K _{ISET}			0.2/R _{SNS}		V/A
预充电电流			,			
预充电电池电压阈值	V_{LOWV}			3.2	~	V
预充电电流/恒流充电电流	K _{PRE}			1/5		
充饱电流检测						
电池充饱转灯电流	I _{TERM}			150		mA
PWM						
振荡器频率	fosc		350	400	450	KHz
电池保护						
输出短路检测电压	V _{SHORT}			2		V

⁽¹⁾为了保证充电电流检测精度, R_{SNS} 上的电压降设置为大于 50mV. 如果这个电压降设置过高,则会降低充电效率, 因此,推荐 R_{SNS} 上的电压降设置在 50mV 到 200mV 之间.

综述

A6100 是开关式、单节锂电池充电管理芯片,采用峰值电流模的控制模式,适用于大电流锂电池充电应用.图 3 是典型的锂电池充电曲线.

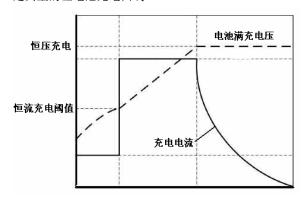


图 3. 电池充电曲线

充电过程

完整的充电过程可分为三个阶段: 预充电、恒流充电(CC)、恒电压充电(CV).当电池电压低于 VLowv, 芯片对电池进行涓流充电 ,即预充电,充电电流为恒流充电的 1/5.当电池电压高于 VLowv, 将进入恒电流充电阶段. 在恒流充电阶段,充电电流恒定,电池电压会快速上升. 当充电电流开始下降,充电进入恒压充电阶段. 当充电电流下降 150mA 左右时,A6100 给出 "充电结束"(EOC)信号.

充电状态指示

A6100 有一个漏极开路的输出驱动端口CHG,在充电过程当中,CHG下拉,红灯亮;当充电电流下降到转灯电流,CHG为高阻态,红灯熄灭.

电池充饱检测

判断电池是否充饱需要两个条件,一是电池电压高于4.1V,二是充电电流小于设定的充饱电流.A6100 会检测充电电流,当电池电压高于4.1V,充电电流下降到低于150mA 左右时,芯片给出充电完成(EOC)信号,红灯熄灭指示电池充电饱和.

系统稳定性

A6100 电流环路和电压环路共用一个补偿管脚 COMP, 补偿外接一个 470nF 的电容.

USB 和适配器兼容

A6100 具备自动限流功能, A6100 内部检测输入电压, 当输入电压下降, A6100 判断输入带载能力不够, 则自动限流, 保证输入电压不低于 4.5V。

电池低压提示

A6100 具有电池低压提示功能,当电池电压从高电压下降到 3.2V 左右时,A6100 第 9 脚 GCTL 将输出高电平,此时只有当电池电压恢复到 3.5V 左右,GCTL 恢复输出低电平。

应用

恒流充电电流设置表格

恒流充电电流与 RISET 成反比, RISET 越大, 恒流充电电流越小, 在应用时 RISET 的取值可根据下表, 取合适的数值。

	1			
R _{ISET}	恒流充电电流			
R_{SNS} =0.1 Ω				
20 KΩ	1750mA			
24 ΚΩ	1450mA			
27 ΚΩ	1300mA			
33 ΚΩ	1000mA			
R _{SNS} =0.05Ω				
33 KΩ	2000mA			
43 KΩ	1600mA			
51 KΩ	1400mA			
61 KΩ	1000mA			

电感选择

电感上的电流纹波可以通过下式计算:

$$\Delta I = \frac{1}{L \times f_{S}} \left(\frac{V_{IN} - V_{BAT}}{V_{IN}} \right) \times V_{BAT}$$
 (3)

ΔI 为电感上的电流纹波值, f_S 为 PWM 振荡频率. 从减小噪声上考虑, ΔI 一般取最大充电电流的 30%到 50%. 大多数应用场合,电感可以取 2.2uH.

输出电容选择

输出电容的选择主要是为了减小输出电压纹波,纹波主要由电容的 ESR 引起的,由近似公式:

$$\Delta V_{OUT} = \Delta I_{CHG} (ESR + \frac{1}{8 \times f_{osc} \times C_{OUT}})$$
 (4)

充电电流的纹波主要由电感决定,如果选择的电感感量较小,可以通过选择容值大、ESR 小的输出滤波电容来减小纹波.

纹波电流在电池和输出电容之间的分配主要由两者的等效电阻决定,电容的等效电阻为 ESR 加上电容的交流阻抗,输出电容的等效阻抗越小,则分担的噪声电流越大,越能够稳定电池的充电电流.

满充电压微调

满充电压可通过在管脚 VAD 和地之间接入电阻往上调整.如图 4.

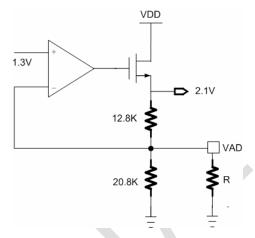


图 4.满充电压微调

通过VAD外接电阻可以调整基准电压,把电压往上调整. 假设满充电压为 V_F ,如果需要调整 V_F 到($V_F+\Delta V$),需要在管脚 VAD 和 GND 之间接入电阻,设为 R. R 可以按下式近似计算:

$$R = \frac{33.28K}{\Lambda V} \quad (5)$$

PCB 版图建议

- 1、电容尽量靠近相应的管脚,特别是 VIN 输入管脚的 稳压由容
- 2、芯片底部加散热片,散热片可与地相连尽量铺宽.(如图 5 所示),要保证良好的散热效果,可以将芯片的底部通过焊锡贴片到散热片上.
- 3、第3、5脚为敏感信号,尽量远离功率部分.
- 4、功率线路走线尽量短.
- 5、地线尽量铺宽,减小地线上的寄生电阻、电感.

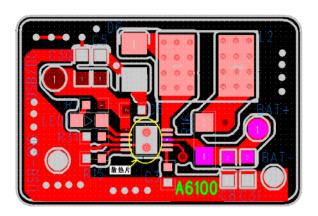
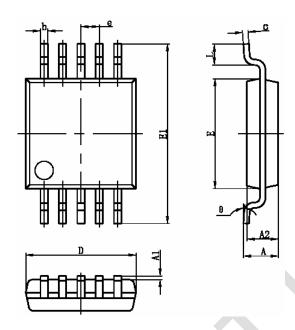



图 5.PCB 示意图

封装

符号	单位	毫米	单位英寸		
	最小	最大	最小	最大	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.50(BSC)	0.020(BSC)		
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	