

DESCRIPTION

The A6250 is a series of low dropout regulators to provide fixed positive output from 1.2V~6.0V (0.1V increasing).

The A6250 offers low power consumption, low quiescent current (Iq=3.0uA) to have longer battery life.

The A6250 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module.

The A6250 has well load transient response and good temperature characteristic, which can assure the stability of chip and power system.

The A6250 is available in SOT-23 and SOT-89 package.

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	E3	A6250E3R-XX	
		A6250E3VR-XX	
SOT-89	K3	A6250K3R-XXZ	
		A6250K3VR-XXZ	
	XX: Output Type		
	25=2.5V, 33=3.3V		
Note	Z: Pin Type A or B or C		
	See Pin Description Table		
	R: Tape & Reel		
AiT provides all RoHS products			

Suffix "V" means Halogen free Package

FEATURES

Low Iq: 3.0uA (typ.)

Max Output current: 250mA

Min in/out voltage difference
 170mV@100mA (V_{OUT}=3.0V)
 400mV@250mA (V_{OUT}=3.0V)

● Input Range: 1.5V~10V

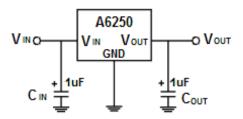
Output Range: 1.2V~6V (0.1V increasing)

Output voltage accuracy within ±2%

Current Limit Protection

Available in SOT-23 and SOT-89 package

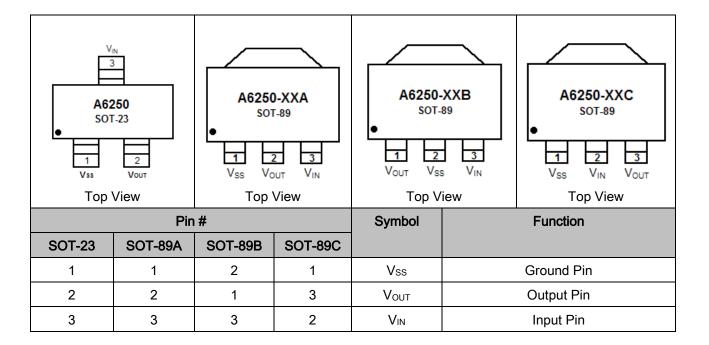
APPLICATION


Power Management for Battery Equipment

MP3, PDA, DSC, Mouse, PS2 Games

Voltage Reference

Regulation after Switching Power


TYPICAL APPLICATION

NOTE1: Input capacitor (C_{IN} =1uF) is recommended in all application circuit. Tantalum capacitor is recommended.

NOTE2: Output capacitor (C_{OUT} =1uF) is recommended in all application to assure the stability of circuit. Tantalum capacitor is recommended.

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Max Input Voltage	10V
Junction Temperature(T _J)	125°C
Environment Temperature (T _A)	-40°C ~ 85°C
Power Dissipation (P _D)	
SOT-23	0.15W
SOT-89-3	0.50W
Storage Temperature (Ts)	-45°C~150°C
Lead Temperature and Time	260°C, 10S

Stresses beyond may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Min	Max	Unit
Input Voltage Range		8	V
Ambient Temperature	-40	+125	°C

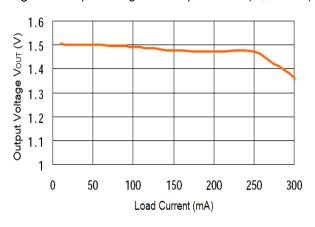
ELECTRICAL CHARACTERISTICS

Test Conditions: $C_{IN}=1\mu F$, $C_{OUT}=1uF$, $T_A=25^{\circ}C$, unless otherwise specified.

A6250-1.5V

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input Voltage	V _{IN}				8	V
Output Voltage	V _{OUT}		1.47	1.5	1.53	V
Maximum Output Current	Іоит (Мах)	V _{IN} =2.5V V _{OUT} >1.47V	250			mA
Input-Output Voltage Differential	Dropout Voltage	I _{OUT} =100mA		270	400	mV
Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	I _{OUT} =40mA 1.6V≤V _{IN} ≤8V		0.2	0.3	%/V
Load Regulation	ΔVоυт	V _{IN} =2.5V 1mA≤I _{OUT} ≤100mA		20	40	mV
Quiescent Current	lq	V _{IN} =2.5V		3.0	5.0	μΑ
Output Voltage Temperature Coefficient	$\frac{\Delta V_{\text{OUT}}}{\Delta T \times V_{\text{OUT}}}$	I _{OUT} =10mA		50		ppm/°C

A6250-3.0V


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input Voltage	V _{IN}				8	V
Output Voltage	Vouт		2.94	3.0	3.06	V
Maximum	L (Mov)	V _{IN} =4V	250			mΛ
Output Current	I _{OUT} (Max)	V _{OUT} >2.94V	250		mA	
Input-Output		I _{ОUT} =100mA		170	300	
Voltage Differential	Dropout Voltage	I _{ОUТ} =200mA		320	500	mV
Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	I _{OUT} =40mA 3.2V≤V _{IN} ≤8V		0.2	0.3	%/V
Load Regulation	ΔVоυт	V _{IN} =4.0V 1mA≤I _{OUT} ≤100mA		20	40	mV
Quiescent Current	Iq	V _{IN} =4V		3.0	5.0	μΑ
Output Voltage Temperature Coefficient	$\frac{\Delta V_{\text{OUT}}}{\Delta T \times V_{\text{OUT}}}$	I _{OUT} =10mA		50		ppm/°C

TYPICAL PERFORMANCE CHARACTERISTICS

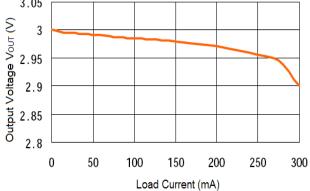

Load regulation

Figure 1. Output Voltage VS. Output Current(Vout=1.5V)

3.05 3

Figure 2. Output Voltage VS Output Current(V_{OUT}=3.0V)

Line Regulation

Figure 3. Line regulation (Vout=1.5V)

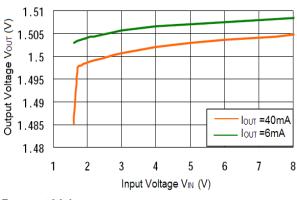
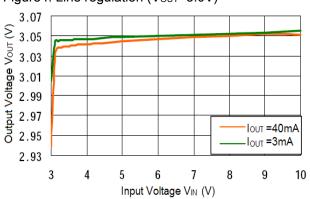
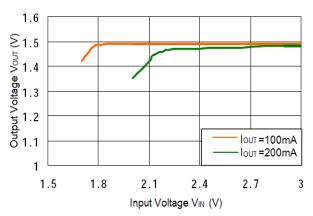
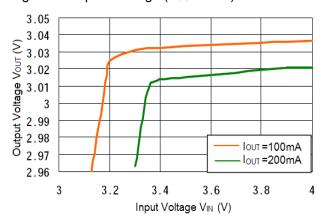
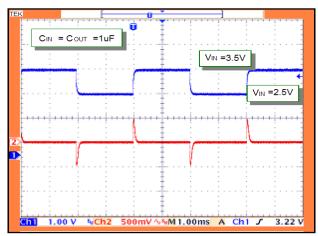
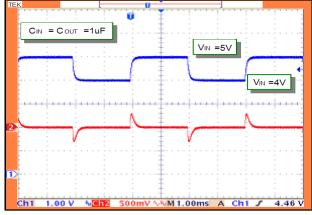



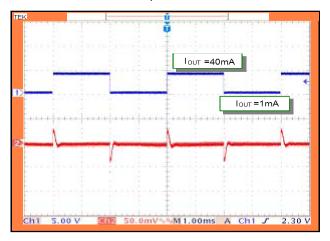
Figure 4. Line regulation (Vout=3.0V)

Dropout Voltage

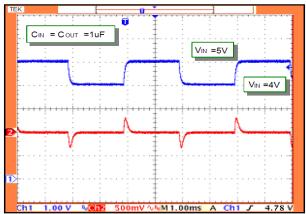
Figure 5. Dropout Voltage (Vout=1.5V)

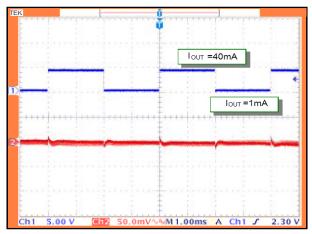




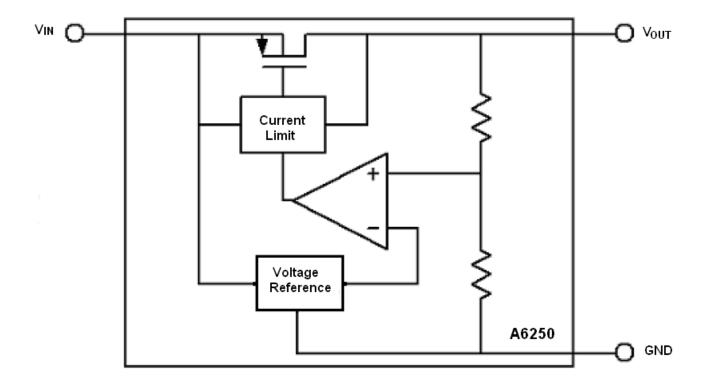

Figure 6. Dropout Voltage (Vout=3.0V)


1. Input Voltage Transient Response V_{OUT} =1.5V, I_{OUT} =10mA

3. Input Voltage Transient Response V_{OUT} =3.0V, I_{OUT} =10mA


5. Load Transient Response Vout=1.5V


2. Input Voltage Transient Response V_{OUT} =1.5V, I_{OUT} =1mA

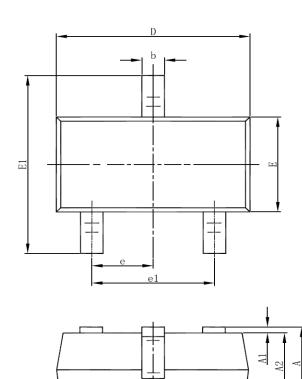

 Input Voltage Transient Response V_{OUT}=3.0V, I_{OUT}=1mA

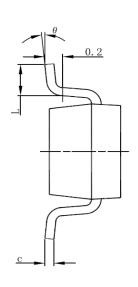
6. Load Transient Response Vout=3.0V

BLOCK DIAGRAM

DETAILED INFORMATION

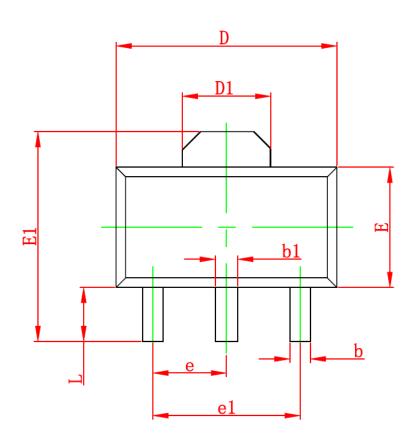
Explanation

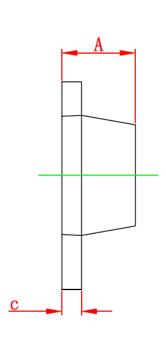

A6250 is a series of low dropout voltage and low power consumption three pins regulator. Its application circuit is very simple, which only needs two outside capacitors. It is composed of these modules: high accuracy voltage reference, current limit circuit, error amplifier, output driver and power transistor.


Current Limit module can keep chip and power system away from danger when load current is more than 250mA.

A6250 uses trimming technique to assure the accuracy of output value within±2%,at the same time, temperature compensated is elaborately considered in this chip, which makes A6250's temperature coefficient within 50ppm/°C.

PACKAGE INFORMATION


Dimension in SOT-23 (Unit: mm)



SYMBOL	MIN	MAX	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
Е	1.500	1.700	
E1	2.650	2.950	
е	0.950(BSC)		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	

Dimension in SOT-89-3 (Unit: mm)

Symbol	Min	Max	
А	1.400	1.600	
b	0.320	0.520	
b1	0.400	0.580	
С	0.350	0.440	
D	4.400	4.600	
D1	1.550 REF		
E	2.300	2.600	
E1	3.940	4.250	
е	1.500 TYP		
e1	3.000 TYP		
L	0.900 1.200		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.