AiT Semiconductor Inc.

DESCRIPTION

The A6251 series are a group of positive voltage output, three–pin regulator, that provide a high current even when the input/output Voltage differential is small. Low power consumption and high accuracy is achieved through CMOS technology. They allow input voltages as high as 18V.

The A6251 is available in SOT-23 and SOT-89-3 packages.

FEATURES

- Ultra low quiescent current: 3.0uA(typ.)
- High input voltage (up to 18V)
- Low dropout voltage :80mV@Iout=40mA (Vout=3.3V)
- Output voltage accuracy : ±2%
- Maximum output current : 250mA (within max. power dissipation, Vout=3.3V)
- Low temperature coefficient
- Available in SOT-23 and SOT-89-3 packages

ORDERING INFORMATION

Package Type	Part Number		
SOT 22	E2	A6251E3R-XX	
301-23	ES	A6251E3VR-XX	
SOT 80 3	K3	A6251K3R-XX	
301-69-3		A6251K3VR-XX	
	XX: Output Voltage		
Note	V: Halogen free Package		
	R: Tape	& Reel	
AiT provides all RoHS free products			
Suffix " V " means Halogen free Package			

APPLICATION

- Cameras, video recorders
- Voltage regulator for microprocessor
- Voltage regulator for LAN cards
- Wireless communication equipment
- Audio/Video equipment

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{IN} , Input Voltage		18V
V _{OUT} , Output Voltage		$V_{\text{SS}}\text{-}0.3\text{V} \sim \text{V}_{\text{IN}} \text{+}0.3\text{V}$
Iout, Output Current		500mA
T _{OPR} , Operating Temperature Range		-40°C ~85°C
Tstg, Storage Temperature Range		-40°C ~125°C
P _D , Power Dissipation	SOT-23	300mW
	SOT-89-3	500mW

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditio	ons	Min	Тур.	Max	Unit
Output Voltage	Vout(e) Note2	I _{OUT} =40mA, V _{IN} =V _{OUT} +1V		x0.98	Vout(t) Note1	x1.02	V
Input Voltage	Vin					18	V
Maximum Output Voltage	Iout_max	V _{IN} =V _{OUT} +1V		250			mA
Load Regulation	ΔVουτ	V _{IN} =V _{OUT} +1V, 1mA≤I _{OUT} ≤60mA			15	40	mV
Dropout Voltage NOTE 3	Vdif	Iout=40mA	A6251-33		80		
			A6251-40		70		mv
Supply Current	lss	VIN=VOUT+1V			3	4	uA
Line Devulations	ΔVουτ	I _{OUT} =40mA V _{OUT} +1V≤V _{IN} ≤18V				0.2	%/V
Line Regulations	$\Delta V_{\text{IN}} \times V_{\text{OUT}}$			0.	0.1		
$\Delta V_{OUT}/\Delta T_A$	Temperature Coefficient	V _{IN} =V _{OUT} +1V, I _{OUT} =40mA -40°C <t<sub>A<85°C</t<sub>			±0.7		mV/°C

VIN= VOUT+1.0V, CIN=CL=10uF, TA=25°C, unless otherwise noted

NOTE1: VOUT (T): Specified Output Voltage

NOTE2: V_{OUT (E)}: Effective Output Voltage (ie. The output voltage when "V_{OUT (T)}+1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)

NOTE3: VDIF: VIN1 -VOUT (E)'

 V_{IN1} : The input voltage when $V_{\text{OUT(E)}}$ appears as input voltage is gradually decreased.

Vout (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout and {Vout (T)+1.0V} is input.

BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOT-23 (Unit: mm)

SYMBOL	MIN	MAX	
А	-	1.300	
A1	0.000	0.100	
A2	1.000	1.200	
b	0.350	0.500	
С	0.100	0.250	
D	2.700	3.100	
E	1.500	1.800	
E1	2.600	3.000	
е	0.950(BSC)		
e1	1.700	2100	
L	0.200	-	
θ	0°	8°	

Dimension in SOT-89-3 (Unit: mm)

 Symbol

 A

 b1

 c

 D

 D1

 E

 E1

е

e1 L

_	<u>C</u>	
- -		1
MIN	Max	
1.400	1.600	
0.360	0.480	
0.410	0.530	
0.380	0.430	
4.400	4.600	
1.400	1.750	
2.400	2.600	
-	4.250	

1.600

3.200

-

1.400

2.800

0.800

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.