

DESCRIPTION

A6303 series is a group of positive voltage output, low power consumption, low dropout voltage regulator.

A6303 can provide output value in the range of 1.0V~4.5V every 0.1V step. It also can be customized on command. A6303 can also work under a wide input voltage ranging from 2.0V to 6V.

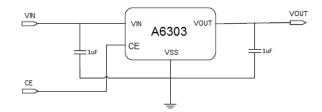
A6303 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module.

A6303 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within ±2%.

The A6303 is available in SOT-25, SC70-5 and DFN4(1x1) packages.

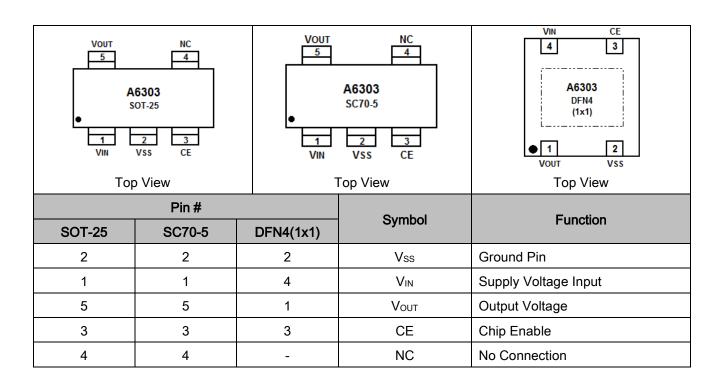
ORDERING INFORMATION

Package Type	Part Number		
SOT-25	E5	A6303E5R-XXA	
SPQ: 3,000pcs/Reel	⊑ 3	A6303E5VR-XXA	
SC70-5	C5	A6303C5R-XX	
SPQ: 3,000pcs/Reel	CS	A6303C5VR-XX	
DFN4(1x1)	J4	A6303J4R-XX	
SPQ: 5,000pcs/Reel	J4	A6303J4VR-XX	
	XX: Output Voltage		
Note	A:Type A		
	V: Halogen free Package		
	R: Tape & Reel		
AiT provides all RoHS free products			


FEATURES

- Output voltage range: 1.0V~4.5V (customized on command every 0.1V step)
- Low power consumption: 35uA (Typ.)
- Low output noise (47uVRMS)
- Shutdown mode: 0.1uA
- Low dropout voltage: 300mV@300mA (Typ.)
- High ripple rejection:70dB@1kHz (Typ.)
- Low temperature coefficient: ±100ppm/°C
- Excellent line regulation: 0.05%/V
- Build-in 1.5k discharge resistor when CE low
- Highly accurate: ±2%
- Output current limit
- Fold-back output short circuit protection
- Available in SOT-25, SC70-5 and DFN4(1x1) packages

APPLICATION


- Power source for cellular phones and various kind of PCSs
- Battery Powered equipment
- Power Management of MP3, PDA, DSC, Mouse, PS2 Games
- Voltage Reference
- Regulation after Switching Power

TYPICAL APPLICATION

NOTE: Input capacitor (C_{IN} =1uF) and Output capacitor (C_{OUT} =1uF) are recommended in all application circuit.

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Max Input Voltage		8\	
T _J , Operating Junction Temperature		125°C	
Output Current		300mA	
T _A , Ambient Temperature		-40°C ~85°C	
	SOT-23	250mW	
	SOT-25	250mW	
Power Dissipation	SC-70-5	250mW	
	DFN4(1x1)	600mW	
	DFN4(1.2x1.6)	800mW	
Ts, Storage Temperature		-40°C ~150°C	
Lead Temperature & Time		260°C, 10s	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Heat Sink Area of PCB for DFN4(1x1) is recommended at least 2.5mmx4mm

RECOMMENDED OPERATING CONDITIONS

Parameter	MIN	MAX	Units	
Input Voltage Range	2	6	V	
Ambient Temperature ^{NOTE2}	-40	85	°C	

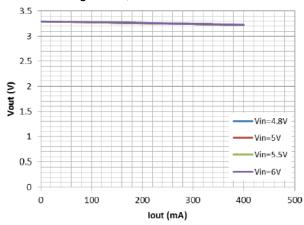
NOTE2: The operation ambient temperature range is verified on several test samples. Not a test condition for volume production whose test is only performed under 25°C.

ELECTRICAL CHARACTERISTICS

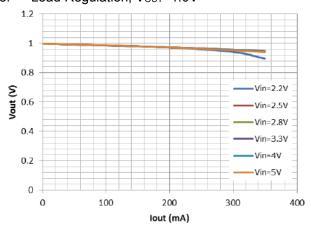
Test Conditions: C_{IN}=1uF, C_{OUT}=1uF, T_A=25°C, unless otherwise noted.

A6303, For Arbitrary Output Voltage

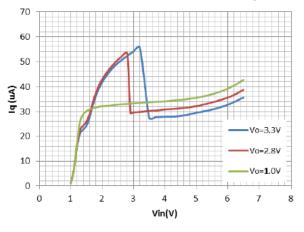
Parameter	Symbol	Conditions		Min	Тур.	Max	Unit
Input Voltage	Vin			2	-	6	V
Output Voltage	Vouт	V _{IN} =Set V _{OUT} +1V 1mA≦I _{OUT} ≦30mA	V _{OUT} >1.5V	V _{OUT} x0.98 V _{OUT}	V _{оит} x1.02	V	
			V _{OUT} ≤1.5V	V _{OUT} -0.03	V 001	V _{OUT} +0.03	
Max Output Current	Іоит (Мах)	V _{IN} - V _{OUT} =1V		300	-	i	mA
Dropout Voltage	$V_{ m DROP}$ NOTE3	I _{OUT} =100mA		-	100	150	mV
V _{OUT} ≥2.8V	V DROP. 1-1	I _{ОUТ} =300mA	I _{OUT} =300mA		300	400	
Line Deculation	ΔVουτ	I _{OUT} =40mA			0.05	0.0	0/ 0/
Line Regulation	$\Delta V_{\text{IN}} \times V_{\text{OUT}}$	2.8V≤V _{IN} ≤6V		-	0.05	0.2	%/V
Load Regulation	ΔVουτ /ΔΙουτ	V _{IN} =Set V _{OUT} +1V 1mA≤I _{OUT} ≤300mA		-	50	80	mV
Supply Current	Iss	V _{IN} =Set V _{OUT} +1V		-	35	80	uA
Supply Current (Standby)	ISTANDBY	V _{IN} =Set V _{OUT} +1V,	V _{CE} = V _{SS}	-	0.1	1.0	uA
Output Voltage	ΔV_{OUT}	I _{OUT} =30mA		-	±100	-	ppm/°C
Temperature Coefficient	ΔT × V _{OUT}						
Ripple Rejection	PSRR	f=1kHz, Ripple=0. V _{IN} =Set V _{OUT} +1V	5Vp-p	-	70	-	dB
Current Limit	I _{LIM}			300	-	i	mA
CE Input Voltage "H"	V _{CEH}			1.5	-	Vin	V
CE Input Voltage "L"	V _{CEL}			0	-	0.25	V
Output Noise	EN	BW=10Hz~100kHz		-	47	-	uV _{RMS}
Discharge Resistor	Rdischarge	CE=0, V _{OUT} =3.0V		-	1.5k	1	Ω
CE pin pull down resistor	Rcepd	CE=V _{IN} =5V		-	500k	-	Ω

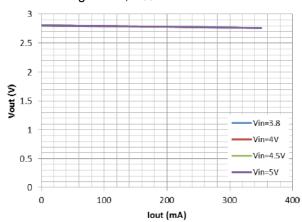

 $NOTE3: V_{DROP} = V_{IN} 1 - (V_{OUT} 2^*0.98) \ V_{OUT} 2 \ is \ the \ output \ voltage \ when \ V_{IN} = V_{OUT} 1 + 1.0V \ and \ I_{OUT} = 300 mA.$

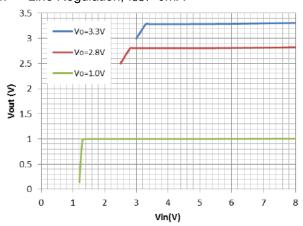
V_{IN}1 is the input voltage at which the output voltage becomes 98% of V_{OUT}1 after gradually decreasing the input voltage.

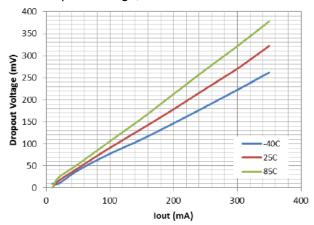

TYPICAL PERFORMANCE CHARACTERISTICS

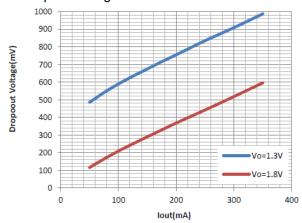
T=25°C


1. Load Regulation, Vout=3.3V

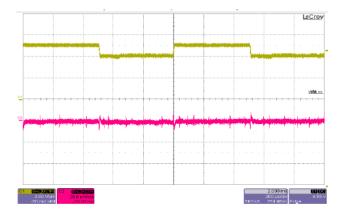

3. Load Regulation, Vout=1.0V


5. Quiescent Current, I_{OUT}=0mA,CE=high

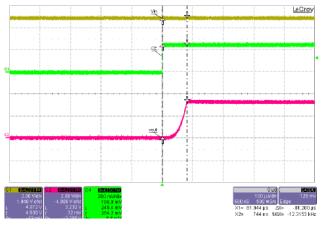

2. Load Regulation, Vout=2.8V


4. Line Regulation, IOUT=0mA

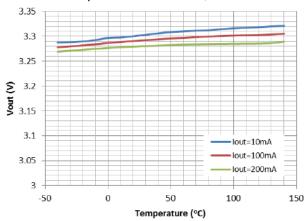
6. Dropout Voltage, V_{OUT}=3.3V

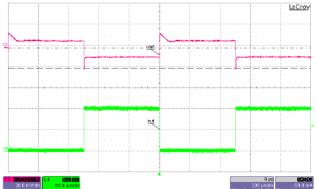


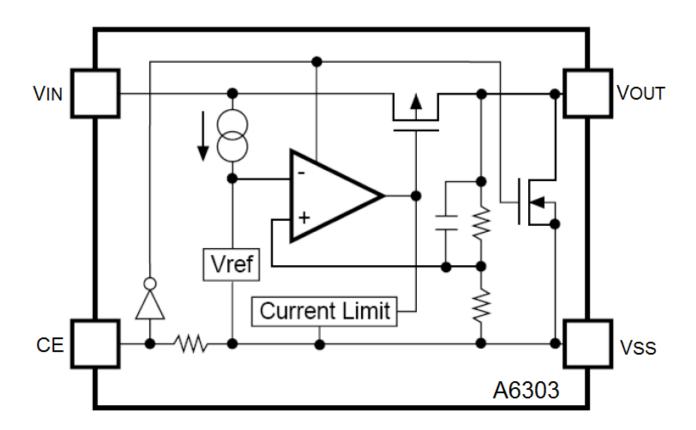
7. Dropout Voltage



9. Line Transient Response,


Vout=3.3V, Iout=20mA, Brown: Vin; Red: Vout

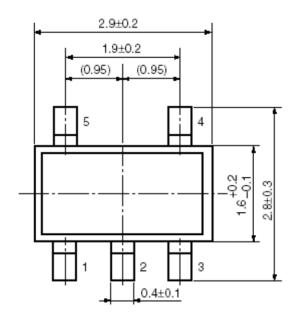

11. CE Chip Enable Response


8. Vout Temperature Coefficient, Vout=3.3V

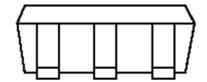
Load Transient Response, V_{IN}=5V, V_{OUT}=3.3V,
 I_{OUT}=1~100mA, Green: I_{OUT}; Red: V_{OUT}

BLOCK DIAGRAM

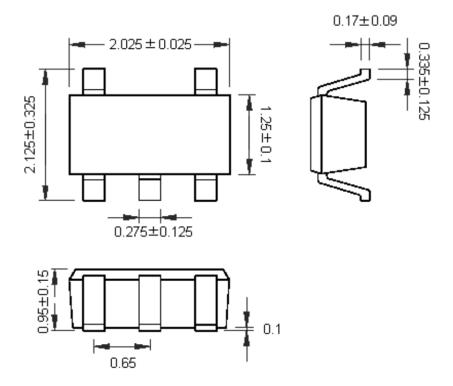
DETAILED INFORMATION

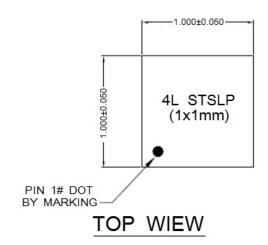

A6303 series is a group of positive voltage output, low noise, low power consumption, low dropout voltage regulator.

A6303 can provide output value in the range of 1.0V~4.5V every 0.1V step. It also can be customized on command.

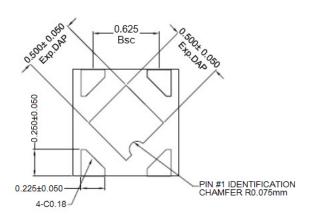

A6303 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module. A6303 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within±2%.

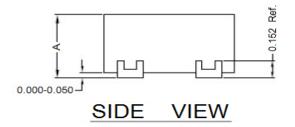
PACKAGE INFORMATION


Dimension in SOT-25 (Unit: mm)



Dimension in SC70-5 (Unit: mm)


Dimension in DFN4 (1x1) (Unit: mm)


NOTE:

1) 'A' DIMENSION AS BELOW TABLE

		STSLP
Α	MAX.	0.600
	NOM.	0.550
	MIN.	0.500

BOTTOM VIEW

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.