

DESCRIPTION

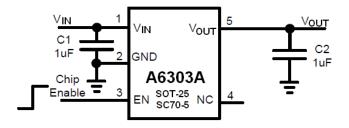
The A6303A is designed for portable RF and wireless applications with demanding performanceand space requirements. The A6303A performance is optimized for battery -powered systems to deliver ultra low noise and low quiescent current. Regulator ground currentincreases only slightly in dropout, furtherprolonging the battery life.

The A6303A also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The A6303A consumes less than 0.01µA in shutdown mode and has fast turn-on time less than 50µs. The other features include ultra low dropout voltage. high output accuracy, current limiting protection and high ripple rejection ratio.

The A6303A is available in SOT-23, SOT-25 and SC70-5 Packages.

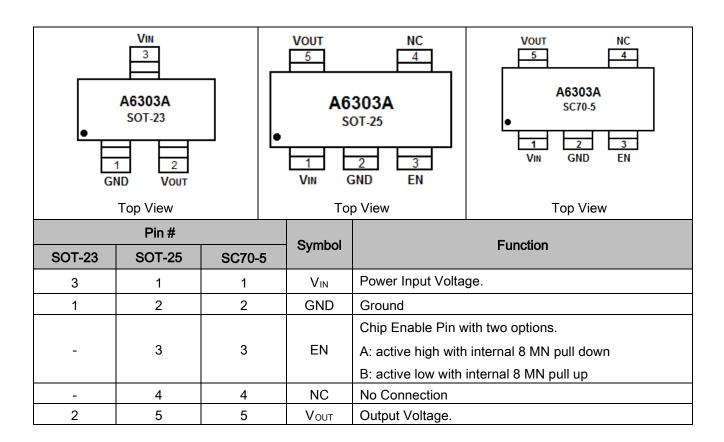
ORDERING INFORMATION

Package Type	Part Number		
SOT-23	E3	A6303AE3R-XXZ	
301-23		A6303AE3VR-XXZ	
SOT-25	E5	A6303AE5R-XXZY	
301-23		A6303AE5VR-XXZY	
CC70 F	C5	A6303AC5R-XX	
SC70-5	Co	A6303AC5VR-XX	
	XX: Output Voltage		
	12= 1.2V, 25=2.5V, 33=3.3V		
		put Type	
	See	Pin description	
Note	Y: Enable Function		
	H: High Enable		
	L: Low Enable		
	V: Green Package		
	R: Tape & Reel		
AiT provides all Pb free products			
Suffix "V" means Green Package			


FEATURES

- Ultra-low Noise for RF Application (SOT-23)
- Ultra-Fast Response in Line/Load Transient
- <0.01µA Standby Current When Shutdown
- Low Dropout: 210mV@300mA
- Wide Operating Voltage Ranges: 2V to 6V
- Wide Output Voltage Range: 1.2V to 5V (SOT-23)
- TTL-logic-Controlled Shutdown Input (SOT-25, SC70-5)
- Low Temperature Coefficient
- **Current Limiting Protection**
- Thermal Shutdown Protection
- Only 1µF Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- Custom Voltage Available
- Fast output discharge (SOT-25, SC70-5)
- Available in SOT-23, SOT-25, SC70-5 Package

APPLICATION


- Cellular and Smart Phones
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- **PCMCIA Cards**
- MP3/MP4/MP5 Plavers
- Portable Information Appliances

TYPICAL APPLICATION

NOTE: Output capacitor (C2 ≥ 2.2uF) is recommended in A6303A-1.2V, A6303A-1.3V, A6303A-1.5V and A6303A-1.8V application to assure the stability of circuit.

PIN DESCRIPTION

THERMAL RESISTANCE

Package	θја	θις
SOT-23	250°C/W	130°C/W
SOT-25	250°C/W	130°C/W
SC70-5	333°C/W	170°C/W

NOTE: Thermal Resistance is specified with approximately 1 square of 1 oz copper.

ABSOLUTE MAXIMUM RATINGS(NOTE 1)

V _{IN} , Input Supply Voltage	
SOT-25, SC70-5	-0.3V to +6V
SOT-23	-0.3V to +6.5V
EN Pin Input Voltage (SOT-25, SC70-5)	-0.3V to V _{IN}
Output Voltages	-0.3V to V_{IN} +0.3V
Output Current	300mA
Maximum Junction Temperature	
SOT-25, SC70-5	150°C
SOT-23	125°C
Operating Temperature Range NOTE2	-40°C ~ 85°C
Storage Temperature Range	-65°C ~ 125°C
Lead Temperature (Soldering, 10s)	300°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

NOTE2: The A6303A is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

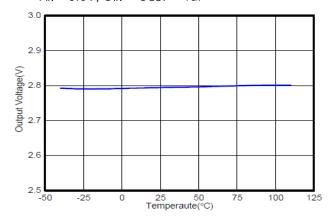
ELECTRICAL CHARACTERISTICS (NOTE 1)

 V_{IN} = 3.6V, EN = V_{IN} (SOT-25, SC70-5), C_{IN} = C_{OUT} = 1uF, T_A = 25°C, unless otherwise specified.

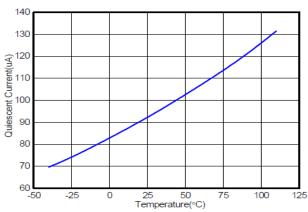
Paramet	er	Symbol	Condition	ns	Min	Тур	Max	Unit
Input Voltage		V _{IN}			2	-	6	V
Output Voltage Acc	uracy ^{NOTE2}	ΔVουτ	V _{IN} = 3.6V, I _{OUT} = 1mA		-1 -2	-	+1	%
Current Limit		I _{LIM}	$R_{LOAD} = 1\Omega$		400	430	-	mA
Quiescent Current		IQ	I _{OUT} = 0mA	SOT-25 SC70-5 SOT-23	1	90	130	μΑ
Dunner t \ / alta a a			I _{OUT} = 200mA, V _{OUT} = 2.8V		-	130	180	\/
Dropout Voltage		VDROP	I _{OUT} = 300mA, V _{OUT} = 2.8V		-	210	300	mV
Line Regulation NOTI	Ξ3	ΔV _{LINE}	V _{IN} = 3.6V to 5.5V I _{OUT} = 1mA	/	-	0.05	0.17	%/V
Load Regulation NOT		ΔV_{LOAD}	1mA < I _{OUT} < 300mA		-	-	2	%/A
Output Voltage NOTE Temperature Coeffice		ТСуоит	I _{OUT} = 1mA		-	±60	-	ppm/ºC
Standby Current		Ізтву	V _{EN} = GND, Shutdown	SOT-25 SC70-5	-	0.01	0.1	μΑ
EN Input Bias Curre	ent	I _{IBSD}	V _{EN} =GND or V _{IN}	SOT-25 SC70-5	-	-	500	nA
EN Input	Logic Low	V _{IL}	V_{IN} = 3V to 5.5V, Shutdown	SOT-25 SC70-5	-	-	0.4	V
Threshold	Logic High	V _{IH}	V_{IN} = 3V to 5.5V, Start up	SOT-25 SC70-5	1.2	-	-	V
Output Noise Voltag	je	емо	10Hz to 100KHz, I _{OUT} = 200mA		-	100	-	μV _{RMS}
Power Supply $f = 217Hz$						-78		
Rejection Ratio	f = 1KHz	PSRR	$I_{OUT} = 100 \text{mA}$		-	-72	-	dB
	f = 10KHz	T	Chutdaus Tarres in an action			-52		00
	nermal Shutdown Temperature T _{SD} Shutdown, Temp increasing T _{SDHY}		increasing	-	165 30	-	∘C	
memai Shuldown	i iyəleresis	I SDHY			_	30	-	³ C

NOTE1: 100% production test at +25°C. Specifictations over the temperature range are guaranteed by design and characterization.

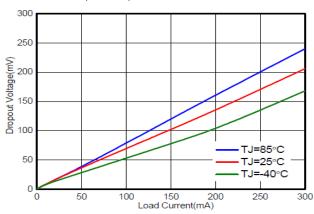
NOTE2: Output voltage accuracy: ±2%.

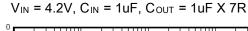

NOTE3: Line regulation is calculated by ΔV_{LINE} = [($V_{OUT1} - V_{OUT2}$) / ($\Delta V_{IN} \times V_{OUT(normal)}$)] x 100. Where V_{OUT1} is the output voltage when V_{IN} = 5.5V, and V_{OUT2} is the output voltage when V_{IN} = 3.6V, ΔV_{IN} = 1.9V, $V_{OUT(normal)}$ = 2.8V.

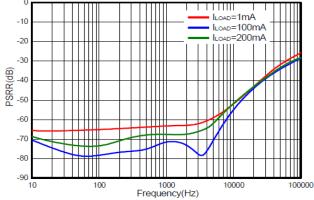
NOTE4: Load regulation is calculated by $\Delta V_{LOAD} = [(V_{OUT1} - V_{OUT2}) / (\Delta I_{OUT} \times V_{OUT(normal)})] \times 100$. Where V_{OUT1} is the output voltage when $I_{OUT} = 1 \text{mA}$, and V_{OUT2} is the output voltage when $I_{OUT} = 300 \text{mA}$. $\Delta I_{OUT} = 0.299 \text{A}$, $V_{OUT(normal)} = 2.8 \text{V}$.


NOTE5: The temperature coefficient is calculated by TC $_{VOUT}$ = [ΔV_{OUT} / (ΔT x V_{OUT})]

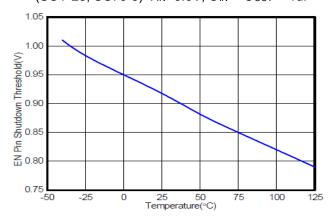
TYPICAL PERFORMANCE CHARACTERISTICS


1. Output Voltabe vs. Temperature $V_{IN} = 3.6V$, $C_{IN} = C_{OUT} = 1uF$

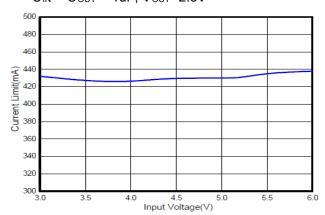

2. Quiescent Current vs. Temperature $V_{IN} = 3.6V$, $C_{IN} = C_{OUT} = 1uF$



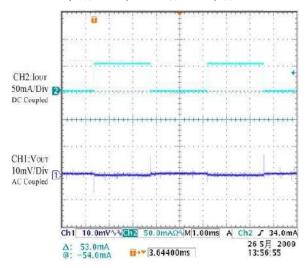
3. Dropout Voltage vs. Load Current $V_{OUT} = 2.8V(SOT-23,), C_{IN} = C_{OUT} = 1uF$



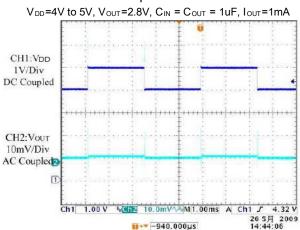
PSRR 4.



5. CE Pin Shutdown Threshold Vs. Temperature $(SOT-25, SC70-5) V_{IN}=3.6V, C_{IN}=C_{OUT}=1uF$

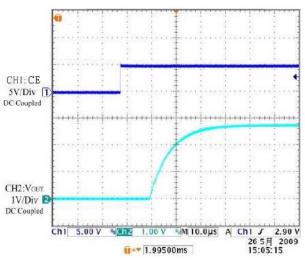


6. Current Limit Vs. Input Voltage $C_{IN} = C_{OUT} = 1uF, V_{OUT} = 2.8V$



7. Load Transient Response

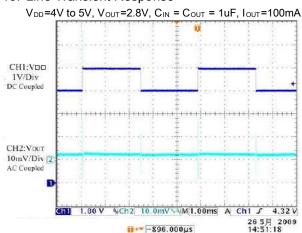
 V_{DD} =5V, V_{OUT} =2.8V, C_{IN} = C_{OUT} = 1uF, I_{OUT} =1mA to 50mA



9. Line Transient Reaponse

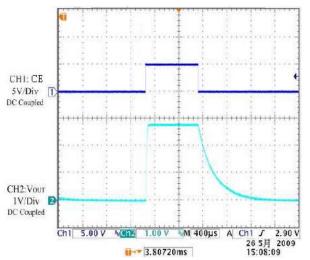

11. Start Up (SOT-25, SC70-5)

 V_{DD} = 5V, V_{OUT} =2.8V, C_{IN} = C_{OUT} = 1uF, No Load

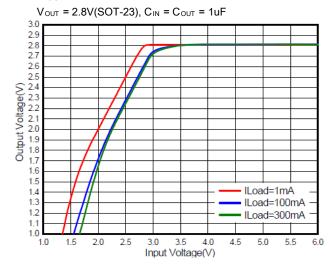


8. Load Transient Response

 V_{DD} =5V, V_{OUT} =2.8V, C_{IN} = C_{OUT} = 1uF, I_{OUT} =1mA to 250mA

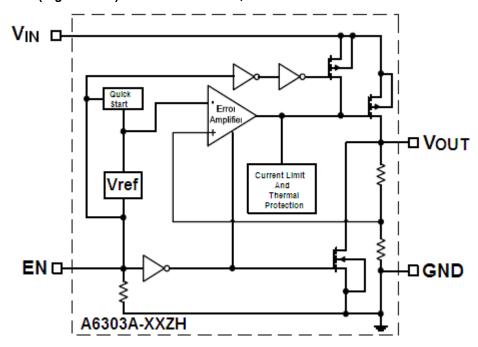


10. Line Transient Response

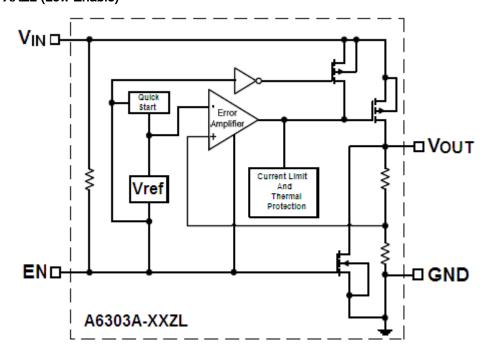


12. CE Pin Shutdown Response (SOT-25, SC70-5)

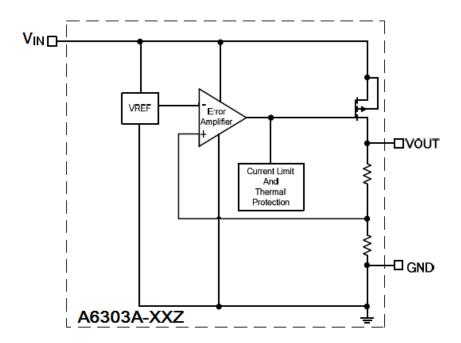
 V_{DD} = 5V, V_{OUT} =2.8V , C_{IN} = C_{OUT} = 1uF, No Load



13. Vout vs. VDD



BLOCK DIAGRAM


A6303AE5R-XXZH (High Enable) & A6303AE3R-XXZ,

A6303AE5R-XXZL (Low Enable)

A6303AE3R-XXZ

DETAILED INFORMATION

Like any low-dropout regulator, the external capacitors used with the A6303A must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1 μ F on the A6303A input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The A6303A is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose vale is at least 1 μ F with ESR is > 25m Ω on the output ensures stability. The A6303A still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the V_{OUT} pin of the A6303A and returned to a clean analog ground.

Enable Function (SOT-25, SC70-5)

The A6303A features an LDO regulator enable/disable function. To assure the LDO regulator will switch on; the CE turn on control level must be greater than 1.2 volts. The LDO regulator will go into the shutdown mode when the below 0.4 volts. For to protect the system, the A6303A have a quick discharge function. If the chip enable function is not needed in a specific application, it may be tied to V_{IN} to keep the LDO regulator in a continuously on stste.

Thermal Considerations

Thermal protection limits power dissipation in A6303A. When the operation junction temperature exceeds 165 °C, the OTP circuit starts the themal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 30°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_Q (SOT-23)$$

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

$$P_D(MAX) = (T_J(MAX) - T_A)/\theta_{JA}$$

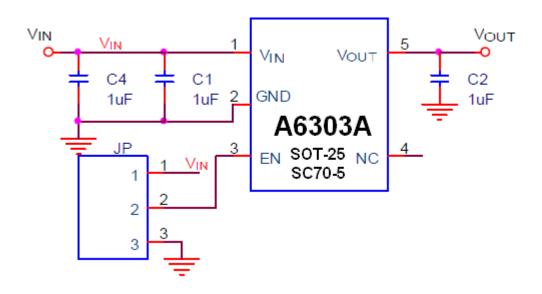
Where T_J (MAX) is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. For recommended operating conitions specification of A6303A, where T_J (MAX) is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction to ambient thermal resistance (θ_{JA} is layout dependent) for SOT-23, SOT-25 package is 250°C/W, SC70-5 package is 333°C/W, on standard JEDEC 51-3 thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by following formula:

$$P_D(MAX) = (125^{\circ}C-25^{\circ}C)/250 = 400 \text{mW} \text{ (SOT-23,SOT-25)}$$

 $P_D(MAX) = (125^{\circ}C-25^{\circ}C)/333 = 300 \text{mW} \text{ (SC70-5)}$

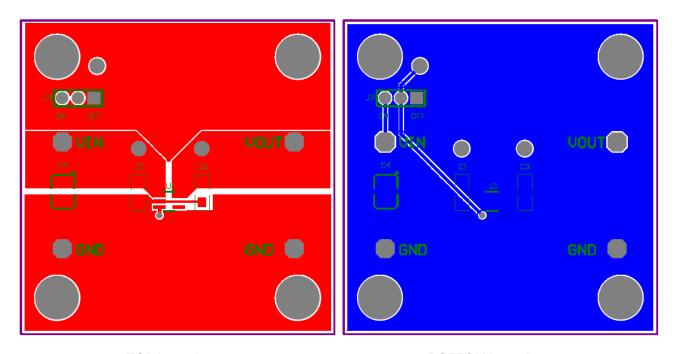
The maximum power dissipation durepends on operating ambient temperature for fixed T_J (MAX) and thermal resteance θ_{JA} . It is also useful to calculate the junction of temperature A6303A under a set of specific conditions. In this example let the Input voltage $V_{IN} = 3.3V$, the output current $I_{OUT} = 300$ mA and the case temperature $T_A = 40$ °C measured by a thermal couple during operation. The power dissipation for the $V_{OUT} = 2.8V$ version of the version of the A6303A can be calculated as:

$$P_D = (3.3V-2.8V) \times 300mA + 3.6V \times 100uA = 150mW$$


And the junction temperature, T_J, can be calculated as follows:vf

$$T_J = T_A + P_D \times \theta_{JA} = 40^{\circ}\text{C} + 0.15\text{W} \times 250^{\circ}\text{C/W}$$

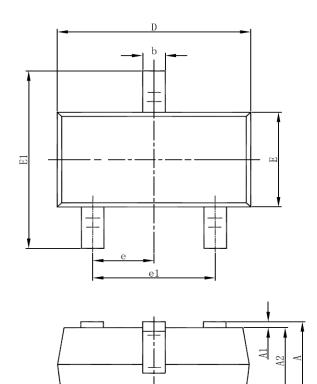
= $40^{\circ}\text{C} + 37.5^{\circ}\text{C} = 77.5^{\circ}\text{C} < T_J(\text{MAX}) = 125^{\circ}\text{C}$

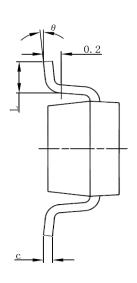

For this operating condition, T_J is lower than the absolute maximum operating junction temperature,125°C, so it is safe to use the A6303A in this configuration.

Layout considerations

To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device.

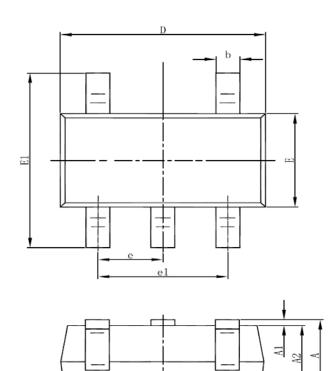
A6303A-2.8V(SOT-25, SC70-5) Layout Circuit

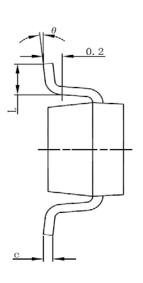



TOP Layer Layout

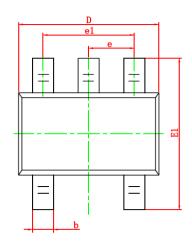
BOTTOM Layer Layout

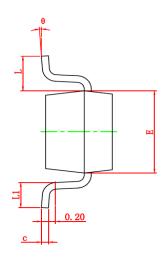
PACKAGE INFORMATION

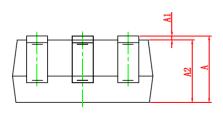

Dimension in SOT-23 Package (Unit: mm)



SYMBOL	MIN	MAX	
А	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
Е	1.500	1.700	
E1	2.650	2.950	
е	0.950(BSC)		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	


Dimension in SOT-25 (Unit: mm)





Symbol	Min	Max	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
E	1.500	1.700	
E1	2.650	2.950	
е	0.950(BSC)		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	

Dimension in SC70-5 (Unit: mm)

Symbol	Min	Max	
А	0.900	1.100	
A1	0.000	0.100	
A2	0.900	1.000	
b	0.150	0.350	
С	0.080	0.150	
D	2.000	2.200	
E	1.150	1.350	
E1	2.150	2.450	
е	0.650 TYP		
e1	1.200	1.400	
L	0.525 REF		
L1	0.260	0.460	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.