

DESCRIPTION

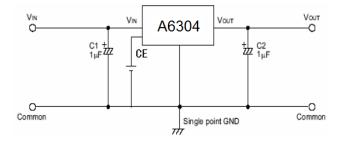
The A6304 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limiter and a phase compensation circuit plus a driver transistor. Output voltage is selectable in 100mV increments within a range of 1.0V ~ 5.0V. The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series.

The current limiter's feedback circuit also operates as a short protect for the output current limiter and the output pin The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

The A6304 is available in SOT-25 package.

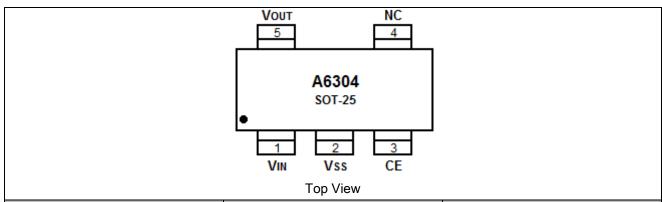
ORDERING INFORMATION

Package Type	Part Number		
SOT-25	E5	A6304E5R-XX	
SPQ: 3,000pcs/Reel	EO	A6304E5VR-XX	
	XX: Output Voltage V: Halogen free Package		
Note			
	R: Tape & Reel		
AiT provides all RoHS products			


FEATURES

- Output Voltage Range 1.0V to 5.0V (selectable in 100mV steps)
- Highly Accurate ± 2%
- Dropout Voltage 300mV @ 100mA (3.0V type)
- High Ripple Rejection 70dB (10 kHz)
- Low Power Consumption 20μA (TYP.)
- Maximum Output Current 300mA
 (V_{IN} ≧ V_{OUT}+1V)
- Standby Current less than 0.1µA
- Internal protector current limiter, short protector and anti back irrigation
- Available in SOT-25 Package

APPLICATION


- Mobile phones
- Cordless phones
- Cameras, Video cameras
- Portable games
- Portable AV equipment
- Reference voltage
- Battery powered equipment

TYPICAL APPLICATION

PIN DESCRIPTION

Pin#	Symbol	Function
1	V _{IN}	Supply Power
2	V _{SS}	Ground
3	CE	Enable Pin
4	NC	NC
5	Vouт	Voltage Output

ABSOLUTE MAXIMUM RATINGS

V _{IN} , Input Voltage		V _{SS} -0.3V ~ V _{SS} +8V	
Von/off, Input Voltage		V_{SS} -0.3 $V \sim V_{IN}$ +0.3 V	
Vоит, Output Current		Vss-0.3V ~ V _{IN} +0.	
P _D , Power Dissipation SOT-25		250m\	
Topr, Operating Ambient Temperature		-40°C ~ +85°C	
T _{STG} , Storage Temperature		-40°C ~ +125°C	

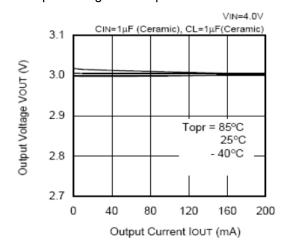
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

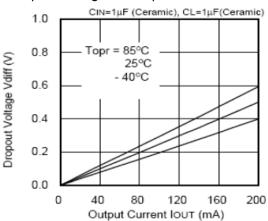
THERMAL RESISTANCE

Package	θја	θις
SOT-25	250°C/W	130°C/W

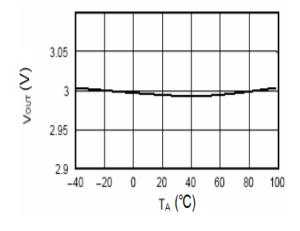
NOTE: Thermal Resistance is specified with approximately 1 square of 1 oz copper.

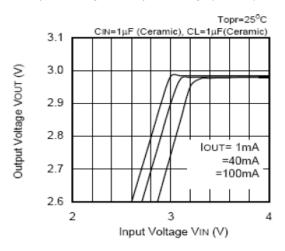
ELECTRICAL CHARACTERISTICS

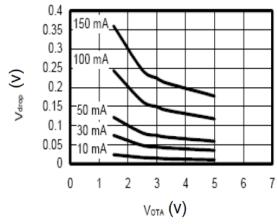

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Circuit
Output Voltage	Vout(e)	$V_{IN} = V_{OUT(S)} + 1.0V,$ $I_{OUT} = 30mA$	V _{OUT(S)} × 0.98	V _{OUT(S)}	V _{OUT(S)} × 1.02	V	1
Output Current	Іоит	$V_{IN} \ge V_{OUT(S)} + 1.0V$	300	-	-	mA	1
		I _{OUT} = 50mA		0.12	0.20		
Dropout Voltage	V _{DROP}	I _{OUT} = 100mA	_	0.30	0.45	V	
Line Regulations	$\frac{\Delta V_{\text{OUT1}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	$V_{OUT(S)}$ + 0.5 $V \le V_{IN} \le 7V$ I_{OUT} = 30mA	-	0.10	0.2	%/V	
Load Regulation	ΔV _{OUT2}	$V_{IN} = V_{OUT(S)} + 1.0V$ $1.0mA \le I_{OUT} \le 100mA$	-	50	100	mV	1
Output Voltage Temperature Characteristics	ΔV_{OUT} $\Delta T_{\text{A}} \times V_{\text{OUT}}$	$V_{IN} = V_{OUT(S)} + 1.0V,$ $I_{OUT} = 10\text{mA}$ $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$	-	±100	-	ppm/	
Supply Current	I _{SS1}	$V_{IN} = V_{OUT(S)} + 1.0V$	-	20	-	μA	2
Input Voltage	V _{IN}		2.0	-	7	V	
Ripple-Rejection	PSRR	$V_{IN} = V_{OUT(S)} + 1.0V,$ f = 10kHz $V_{RIP} = 0.5Vrms,$ $I_{OUT} = 50mA$	-	70	-	dB	1
Short-circuit Current	Ishort	$V_{IN} = V_{OUT(S)} + 1.0V,$ $V_{CE} = on V_{OUT} = GND$	-	60	-	mA	1
CE "High" Voltage	Vceh		1.6	-	Vin	V	1
CE "Low" Voltage	Vcel		-	-	0.25	V	1
CE "High" Current	Ісен	$V_{IN} = V_{CE} = V_{OUT(T)} + $ $1.0V$	-0.1	-	0.1	μΑ	2
CE "Low" Current	Icel	$V_{IN} = V_{OUT(T)} + 1.0V,$ $V_{CE} = V_{SS}$	-0.1	-	0.1	μΑ	2

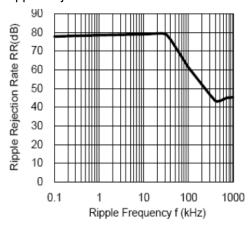

TYPICAL PERFORMANCE CHARACTERISTICS

3.0V Output

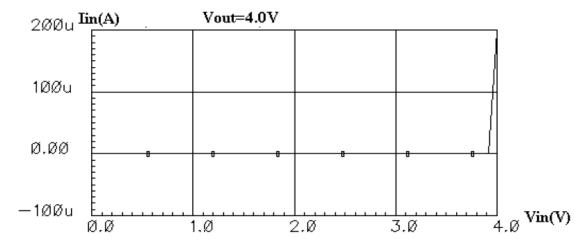

1. Output Voltage vs. Output Current


3. Dropout Voltage vs. Output Current

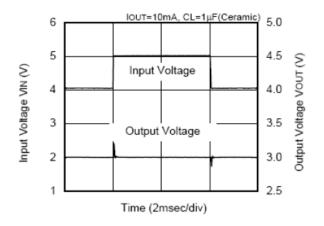

5. Output Voltage vs. Ambient Temperature


2. Output Voltage vs. Input Voltage(Contd.)

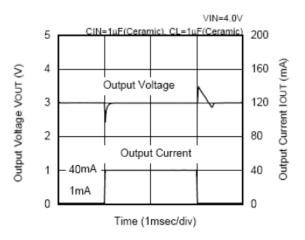
4. Dropout Voltage vs. Output Voltage



6. Ripple Rejection Rate

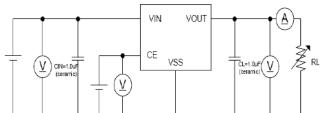

LOW DROPOUT VOLTAGE REGULATOR 300mA LOW DROPOUT ANTI BACK IRRIGATION CMOS VOLTAGE REGULATORS

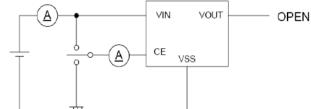
7. Anti Back Irrigation Current



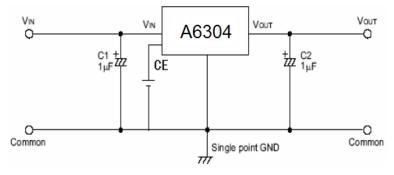
8. Transient Response

Input Transient Response


Load Transient Response

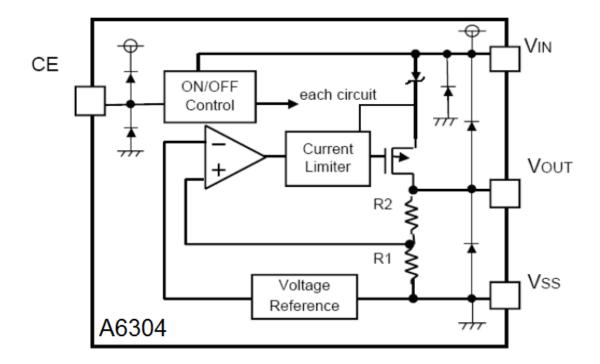


TEST CIRCUIT


1. Test circuits 1

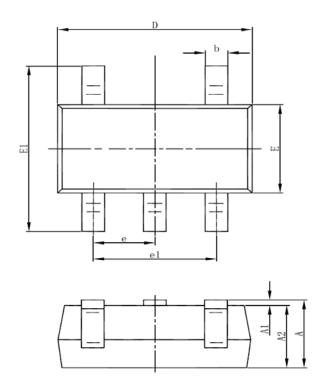
2. Test circuits 2

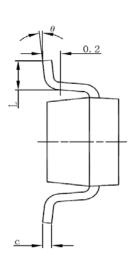
3. Typical application circuit


APPLICATION CONDITIONS

Input capacitor (C_{IN}): 1.0µF or more

Output capacitor (C_L): 1.0µF or more (tantalum capacitor)


Caution A general series regulator may oscillate, depending on the external components selected. Check that no oscillation occurs with the application using the above capacitor.


BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

Symbol	Min	Max		
Α	1.050	1.250		
A1	0.000	0.100		
A2	1.050	1.150		
b	0.300	0.500		
С	0.100	0.200		
D	2.820	3.020		
E	1.500	1.700		
E1	2.650	2.950		
е	0.950(BSC)			
e1	1.800	2.000		
L	0.300	0.600		
θ	0°	8°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.