

DESCRIPTION

A6500 series is a group of positive voltage output, low power consumption, low dropout voltage regulator. A6500 can provide output value in the range of 1.2V~4.5V every 0.1V step. It also can be customized on command.

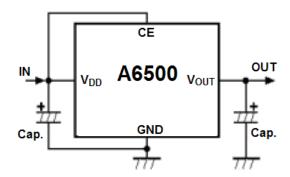
A6500 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module with discharge capability.

A6500 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within±2%.

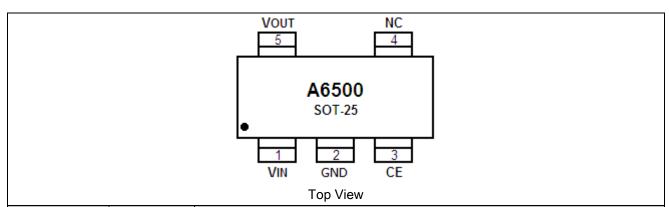
A6500 is available in SOT-25 package.

ORDERING INFORMATION

Package Type	Part Number			
SOT-25	E5	A6500E5R-XX		
301-23	ES	A6500E5VR-XX		
	XX: Output Voltage			
Note	25=2.5V, 33=3.3V			
Note	R: Tap	R: Tape & Reel		
V: Ha	ogen free Package			
AiT provides all RoHS products				
Suffix " V " means Halogen free Package				


FEATURES

- Low Dropout Voltage: 0.46V@ 500mA(Typ.)
- Low Power Consumption: 75uA (Typ.)
- Low Output Noise (47uV_{RMS})
- Standby Mode: 0.1uA
- High Ripple Rejection: 66dB@ 100Hz(Typ.)
- Low Temperature Coefficient: ±100ppm/°C
- Build-In chip enable and discharge circuit
- Excellent Line Regulation: 0.05%/V
- Output Voltage Range: 1.2V~4.5V (customized on command every 0.1V step)
- Highly accurate: ±2% (±1% customized)
- **Output Current Limit**
- Available in SOT-25 Package


APPLICATION

- Power Source for Cellular Phone and Various Kind of PCSs
- **Battery Powered Equipment**
- Power Management of MP3, PDA, DSC, Mouse, PS2 Games
- Reference Voltage Source
- Regulation after Switching Power

TYPICAL APPLICATION

PIN DESCRIPTION

Pin#	Symbol	Function
1	V _{IN}	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin
4	NC	No Connection
5	Vouт	Output Pin

ABSOLUTE MAXIMUM RATINGS

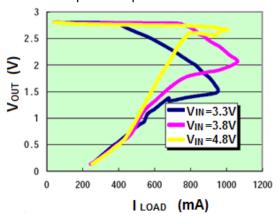
Max Input Voltage	10V
T _J , Junction Temperature	125°C
Output Current	500mA
Power Dissipation	250mW
Ts, Storage Temperature	45°C~150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

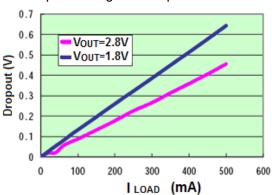
RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	8V
Ambient Temperature	-40°C to 85°C

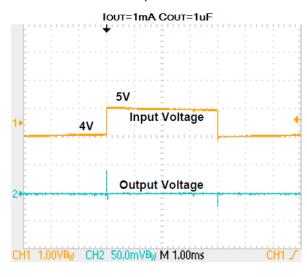
ELECTRICAL CHARACTERISTICS

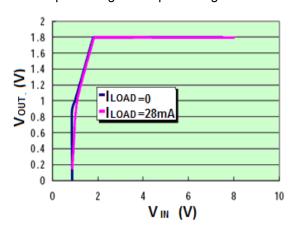

(Test Condition: C_{IN} = 1uF, C_{OUT} = 3.4uF, T_A =25°C, unless otherwise specified.)

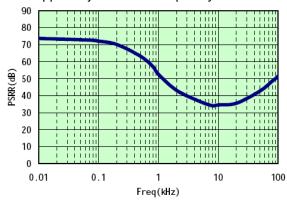
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input Voltage	Vin				8	V
Output Voltage	Vоит	V _{IN} = Set V _{OUT} + 1V 1mA≦ I _{OUT} ≦ 30mA	V _{ОUТ} х0.98	V _{OUT1}	V _{ОUТ} х1.02	V
Maximum Output Current	Іоит (Мах.)	V _{IN} – V _{OUT} = 1V	500			mA
5		I _{OUT} = 100mA		88	120	
Dropout Voltage	V _{DROP} Note1	I _{OUT} = 300mA		270	350	mV
V _{ОUТ} ≧2.8V		I _{OUT} = 500mA		460	600	1
Line Regulation	ΔVоυт	I _{OUT} = 40mA				0/ 0/
	$\Delta V_{\text{IN}} \times V_{\text{OUT}}$	2.8V ≦ V _{IN} ≦ 8V		0.05	0.2	%/V
Load Regulation	ΔVουτ / ΔΙουτ	V _{IN} = Set V _{OUT} + 1V 1mA ≦ I _{OUT} ≦ 500mA		20	40	mV
Supply Current	I _{SS}	V _{IN} = Set V _{OUT} + 1V		75	90	uA
Supply Current (Standby)	ISTANDBY	V _{IN} =Set V _{OUT} + 1V V _{CE} =GND		0.1	1.0	uA
Output Voltage Temperature Coefficiency	ΔV _{OUT} ΔT × V _{OUT}	I _{OUT} = 30mA		±100		ppm/°C
Ripple Rejection	PSRR	$F = 100H_Z$ Ripple = 0.5V _{P-P} $V_{IN} = \text{Set V}_{OUT} + 1V$		65		dB
Short Current Limit	Іым	V _{OUT} = 0V		200		mA
CE Pull down Resistance	Rpd		2.0	5.0	10.0	ΜΩ
CE Input Voltage "H"	V _{CEH}		1.5		V _{IN}	V
CE Input Voltage "L"	Vcel		0		0.25	V
Output Noise	EN	BW=10Hz~100kHz		47		uV _{RMS}

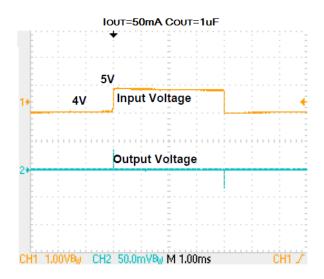

NOTE1: $V_{DROP} = V_{IN}1 - (V_{OUT}2*0.98)$ $V_{OUT}2$ is the output voltage when $V_{IN} = V_{OUT}1 + 1.0V$ and $I_{OUT} = 300$ mA or $I_{OUT} = 500$ mA. $V_{\text{IN}}1$ is the input voltage at which the output voltage becomes 98% of $V_{\text{OUT}}1$ after gradually decreasing the input voltage.

TYPICAL PERFORMANCE CHARACTERISTICS

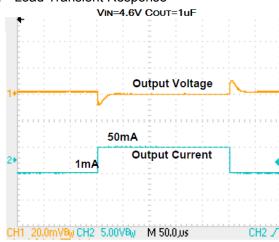

Output Voltage vs. Output Current with output short protection

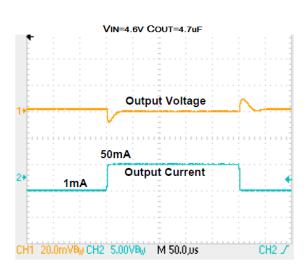

3. Dropout Voltage vs. Output Current

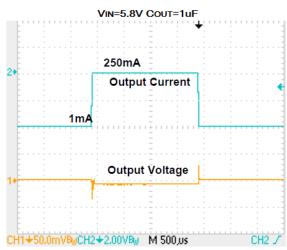

5. Line Transient Response

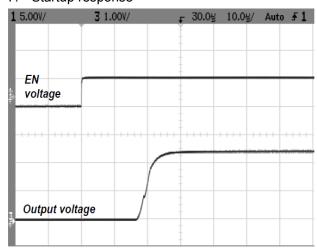


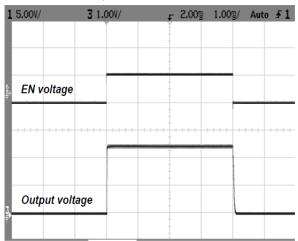
2. Output Voltage vs. Input Voltage

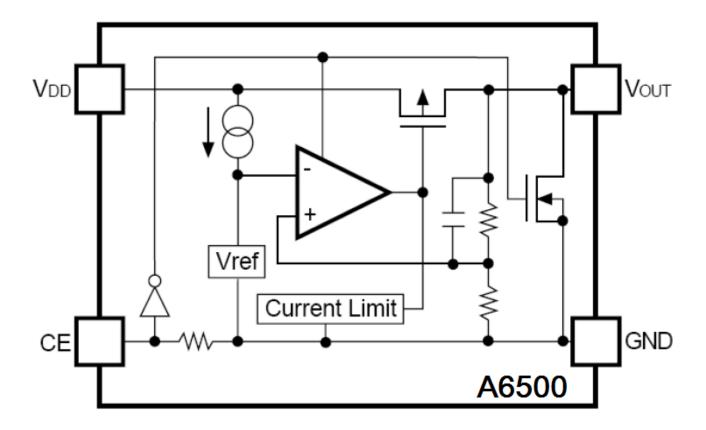



4. Ripple Rejection vs. Frequency








7. Startup response

8. Shutdown response

BLOCK DIAGRAM

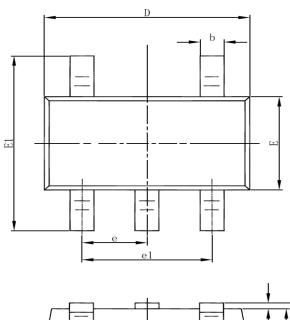
DETAILED INFORMATION

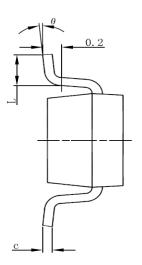
A6500 series is a group of positive voltage output, low noise, low power consumption, low dropout voltage regulator.

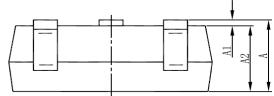

A6500 can provide output value in the range of 1.2V~4.5V every 0.1V step. It also can be customized on command.

A6500 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module. A6500 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within±2%.

Typical Application Circuit


Input capacitor (C_{IN} = 1uF) is recommended in all application circuit.


Output capacitor (C_{OUT} = 3.3uF/4.7uF) is recommended in all application to assure the stability of circuit



PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

Symbol	Min	Max	
А	1.000	1.300	
A1	0.100	0.250	
A2	0.800	0.900	
b	0.300	0.500	
С	0.100	0.200	
D	2.700	3.100	
E	1.500	1.800	
E1	3.100	2.500	
е	0.950(BSC)		
e1	1.700	2.100	
L	0.300	0.600	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or serve property, or environmental damage. minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.