

DESCRIPTION

A6505 dual, low-noise, low-dropout regulator delivers at least 500mA of continuous output current. The output voltage for each regulator is set independently by trimming. Voltages are selectable in 100mV steps within a range of 1.2V to 4.5V. The A6505 includes two independent logic-controlled shutdown inputs and allows the output of each regulator to be turned of independently.

A6505 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module.

A6505 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within ±2%.

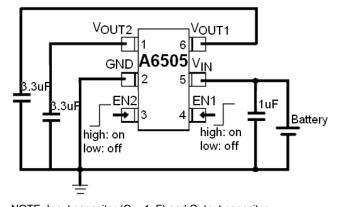
A6505 is available in SOT-26 package.

ORDER INFORMATION

REV1.0

Package Type	Part Number		
SOT-26	E6	A6505E6R-X	
		A6505E6VR-X	
	X:OutputVoltage		
Note	See output voltage portfolio		
	R: Tape & Reel		
	V: Halogen free Package		
AiT provides all RoHS products			
Suffix "V" means Halogen free Package			

- MAY 2012 RELEASED -

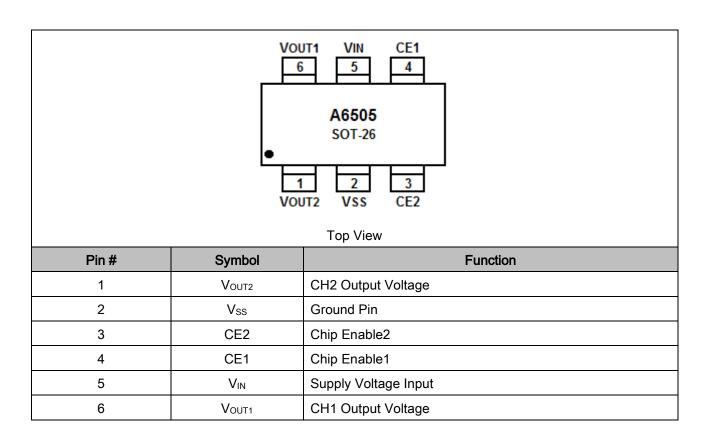

FEATURES

- Two low dropout voltage regulators
- 500mA output current for each LDO
- Low output noise (50uV_{RMS})
- Low dropout Voltage:0.08V@150mA(Typ.)
- Standby Mode: 0.1uA
- High Ripple Rijection:72dB@1KHz (Typ.)
- Excellent Line regulation: 0.05%/V
- Independent Shutdown controls
- 1.2V to 4.5V Factory-Preset Output
- Output Current Limit
- Highly Accurate: ±2%
- Available in SOT-26 package.

APPLICATION

- Cellular phones
- Cordless phones and radio communication equipment
- Battery Powered equipment
- Notebook and hand-hold equipment
- Wireless LAN
- GPS receivers

TYPICAL APPLICATION



- 1 -

NOTE: Input capacitor (C_{IN} =1uF) and Output capacitor (C_{OUT} =1uF/3.3uF) are recommended in all application circuit.

PIN DESCRIPTION

OUTPUT VOLTAGE PORTFOLIO

Code	Output	Voltage	Part	Number	Code Output Voltage		Voltage	Part Number		
Codo	OUT1	OUT2	Pb Free	GREEN	0000	OUT1	OUT2	Pb Free	GREEN	
В	1.5	2.8	A6505E6R-B	A6505E6VR-B	М	2.8	1.8	A6505E6R-M	A6505E6VR-M	
С	1.5	3.0	A6505E6R-C	A6505E6VR-C	0	2.8	2.8	A6505E6R-O	A6505E6VR-O	
D	1.5	3.3	A6505E6R-D	A6505E6VR-D	Р	2.8	3.0	A6505E6R-P	A6505E6VR-P	
Е	1.5	4.0	A6505E6R-E	A6505E6VR-E	Q	3.0	2.5	A6505E6R-Q	A6505E6VR-Q	
G	1.8	2.5	A6505E6R-G	A6505E6VR-G	R	3.0	3.0	A6505E6R-R	A6505E6VR-R	
Н	1.8	2.8	A6505E6R-H	A6505E6VR-H	S	3.0	3.3	A6505E6R-S	A6505E6VR-S	
I	1.8	3.0	A6505E6R-I	A6505E6VR-I	Т	3.3	1.8	A6505E6R-T	A6505E6VR-T	
J	1.8	3.3	A6505E6R-J	A6505E6VR-J	U	3.3	3.3	A6505E6R-U	A6505E6VR-U	

REV1.0 - MAY 2012 RELEASED - -2 -

ABSOLUTE MAXIMUM RATINGS

Max Input Voltage		8/	
T _J , Operating Junction Temperature		125°C	
T _A , Ambient Temperature		-40°C ~ 85°C	
Power Dissipation SOT-26		250mW	
T _S , Storage Temperature		-40°C ~ 150°C	
Lead Temperature & Time		260°C,10S	

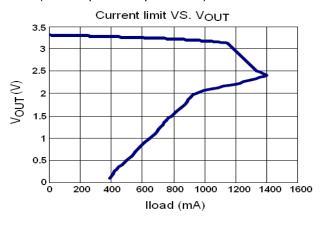
Stresses above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED WORK CONDITIONS

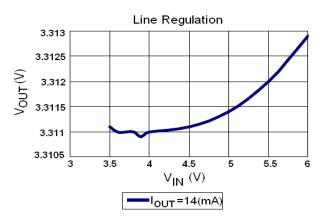
Input Voltage Range	Max. 6V
Ambient Temperature	-40°C ~ 85°C

REV1.0 - MAY 2012 RELEASED - - 3 -

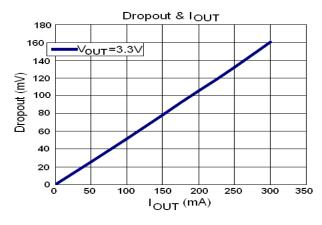
ELECTRICAL CHARACTERISTICS

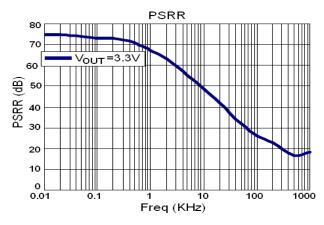

Test Conditions: C_{IN}=1uF,C_{OUT}=3.3uF,T_A=25°C, unless otherwise specified.

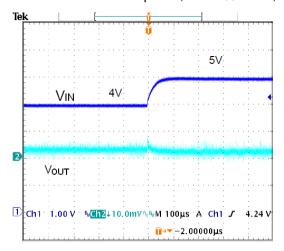
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Input Voltage	V _{IN}		1.2	-	6	V
Output Voltage	V _{OUT}	V _{IN} =Set, V _{OUT} +1V, 1mA≤I _{OUT} ≤30mA	V _{оит} х 0.98	V _{OUT1}	V _{OUT} x 1.02	V
Maximum Output Current	lout(max)		600	-	-	mA
	VDROP	I _{OUT} = 50mA	-	25	40	mV
Dropout Voltage		I _{OUT} = 100mA	-	50	75	
V _{OUT} ≥ 2.8V		I _{OUT} = 150mA	-	75	115	
		I _{OUT} = 400mA	-	220	280	
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	I _{OUT} = 40mA, 2.8V≤V _{IN} ≤6V	-	0.05	0.1	%/V
Load Regulation	$\Delta V_{\text{OUT}} \times \Delta I_{\text{OUT}}$	V _{IN} =Set V _{OUT} +1V 1mA≤I _{OUT} ≤500mA	-	100	150	mV
Supply Current	I _{SS}	V _{IN} =Set V _{OUT} +1V	-	30	50	uA
Supply Current (Standby)	ISTANDBY	V _{IN} =Set V _{OUT} +1V V _{CE} =0V	-	0.1	1.0	uA
Output Voltage Temperature Coefficiency	$\frac{\Delta V_{\text{OUT}}}{\Delta T \times V_{\text{OUT}}}$	V _{IN} =Set V _{OUT} +1V, I _{OUT} =30mA	-	±50	-	ppm/°C
Ripple Rejection	PSRR	F=1000Hz, Ripple=0.5V _{P-P} V _{IN} =Set V _{OUT} +1V	-	72	-	dB
Short Current Limit	I _{LIM}	V _{OUT} =0V	-	500	-	mA
CE Input Voltage "H"	V _{CEH}		1.4	-	-	V
CE Input Voltage "L"	Vcel		-	-	0.25	V
Output Noise	en	BW=10Hz~100kHz	-	50	-	uV _{RMS}

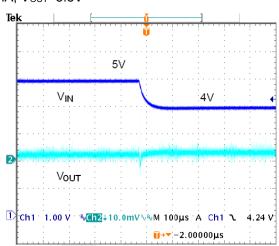

REV1.0 - MAY 2012 RELEASED - - 4 -

TYPICAL CHARACTERISTICS

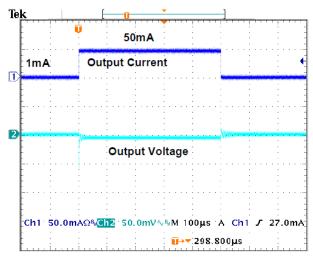

1. Output Voltage vs. Output Current (with output short protection)

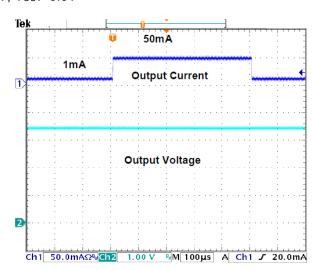

2. Output Voltage vs. Input Voltage

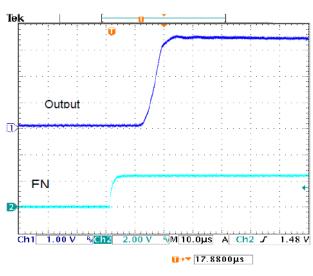

3. Dropout Voltage vs. Output Current



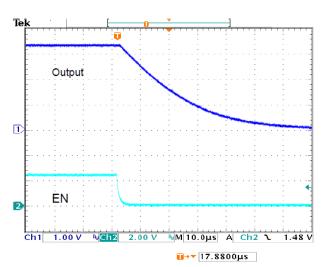
4. Ripple rejection vs. Frequency


5. Line transient response, C_{IN}=C_{OUT}=1uF, I_{OUT}=25mA, V_{OUT}=3.3V

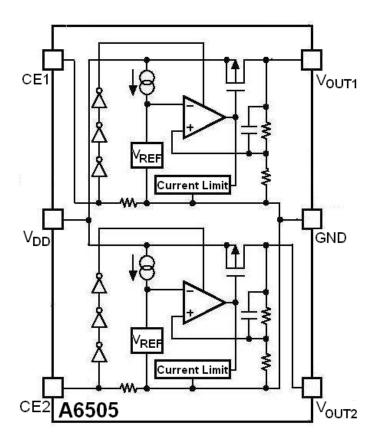



REV1.0 - MAY 2012 RELEASED - - 5 -

6. Load transient response, C_{IN}=C_{OUT}=1uF, V_{IN}=4.5V, V_{OUT}=3.3V



7. Start up from EN


8. Shut down from EN

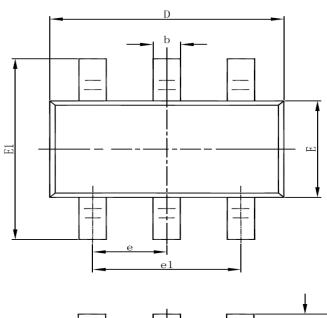
REV1.0 - MAY 2012 RELEASED -

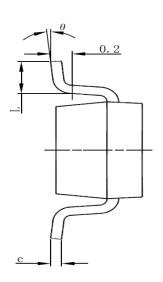
- 6 -

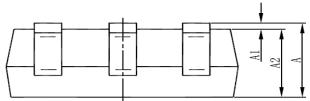
BLOCK DIAGRAM

REV1.0 - MAY 2012 RELEASED - - 7 -

DETAILED INFORMATION


A6505 series are highly accurate, Dual, low noise, CMOS low dropout voltage regulators. The output voltage for each regulator is set independently by trimming. Voltages are selectable in 100mV steps within a range of 1.2V to 4.5V. It also can be customized on command.


A6505 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module. A6505 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within $\pm 2\%$.


REV1.0 - MAY 2012 RELEASED - - 8 -

PACKAGE INFORMATION

Dimension in SOT-26 Package (Unit: mm)

SYMBOL	MIN	MAX		
Α	1.050	1.250		
A1	0.000	0.100		
A2	1.050	1.150		
b	0.200	0.500		
С	0.100	0.250		
D	2.700	3.100		
Е	1.500	1.800		
E1	2.500	3.100		
е	0.950(BSC)			
e1	1.700	2.100		
L	0.300	0.600		
θ	0°	8°		

REV1.0 - MAY 2012 RELEASED - - 9 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAY 2012 RELEASED - - 10 -