

# **Document Title**

A8105 Data Sheet, 2.4GHz FSK/GFSK SOC

# **Revision History**

| <u>Rev. No.</u><br>0.0 | History<br>Initial issue. | <u>Issue Date</u><br>June, 2012 | <u>Remark</u><br>Objective |
|------------------------|---------------------------|---------------------------------|----------------------------|
| 0.0                    |                           |                                 | Objective                  |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |
|                        |                           |                                 |                            |

# Important Notice:

AMICCOM reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice. AMICCOM integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of AMICCOM products in such applications is understood to be fully at the risk of the customer.



# Table of Contents

| 1. General Description                                                                                  |    |
|---------------------------------------------------------------------------------------------------------|----|
| 2. Typical Applications                                                                                 |    |
| 3. Feature                                                                                              | 6  |
| 4. Pin Configurations                                                                                   |    |
| 5. Pin Description (I: input; O: output, I/O: input or output)                                          | 8  |
| 6. Chip Block Diagram                                                                                   | 9  |
| 7. Absolute Maximum Ratings                                                                             | 10 |
| 8. Electrical Specification                                                                             |    |
| 9. SFR & RFR(Radio Frequency Register)                                                                  | 13 |
| 9.1 SFR Overview                                                                                        |    |
| 9.2 RFR Overview                                                                                        | 14 |
| 9.2.1 Mode Register (Address: 0x800h)                                                                   | 18 |
| 9.2.2 Mode Control Register 1 (Address: 0x801h)                                                         | 18 |
| 9.2.2 Mode Control Register 2 (Address: 0x802h)<br>9.2.3 Calibration Control Register (Address: 0x803h) | 18 |
| 9.2.3 Calibration Control Register (Address: 0x803h)                                                    | 19 |
| 9.2.4 FIFO Register I (Address: 0x804h)                                                                 | 19 |
| 9.2.5 FIFO Register II (Address: 0x805h)                                                                | 19 |
| 9.2.8 RC OSC Register I (Address: 0x806h)                                                               | 20 |
| 9.2.9 RC OSC Register II (Address: 0x807h)                                                              | 20 |
| 9.2.10 RC OSC Register III (Address: 0x808h)                                                            | 20 |
| 9.2.10 RC OSC Register IV (Address: 0x809h)                                                             | 20 |
| 9.2.10 RC OSC Register V (Address: 0x80Ah)                                                              | 21 |
| 9.2.10 RC OSC Register VI (Address: 0x80Bh)                                                             | 21 |
| 9.2.11 CKO Pin Control Register (Address: 0x80Ch)                                                       | 21 |
| 9.2.12 GIO1 Pin Control Register I (Address: 0x80Dh)                                                    | 21 |
| 9.2.13 GIO2 Pin Control Register II (Address: 0x80Eh)                                                   | 22 |
| 9.2.14 Clock Register (Address: 0x80Fh)                                                                 |    |
| 9.2.15 Data Rate Register (Address: 0x810h)                                                             | 23 |
| 9.2.16 PLL Register I (Address: 0x811h).                                                                |    |
| 9.2.17 PLL Register II (Address: 0x812h)                                                                |    |
| 9.2.18 PLL Register III (Address: 0x813h)                                                               |    |
| 9.2.19 PLL Register IV (Address: 0x814h)                                                                |    |
| 9.2.20 PLL Register V (Address: 0x815h)                                                                 |    |
| 9.2.21 TX Register I (Address: 0x816h)                                                                  |    |
| 9.2.22 TX Register II (Address: 0x817h)                                                                 |    |
| 9.2.23 Delay Register I (Address: 0x818h)                                                               |    |
| 9.2.24 Delay Register II (Address: 0x819h)                                                              |    |
| 9.2.25 RX Register (Address: 0x81Ah)                                                                    |    |
| 9.2.26 RX Gain Register I (Address: 0x81Bh)                                                             |    |
| 9.2.27 RX Gain Register II (Address: 0x81Ch)                                                            |    |
| 9.2.28 RX Gain Register III (Address: 0x81Bh)                                                           |    |
| 9.2.29 RX Gain Register IV (Address: 0x81Ch)                                                            |    |
| 9.2.30 RSSI Threshold Register (Address: 0x81Fh)                                                        |    |
| 9.2.31 ADC Control Register (Address: 0x820h)                                                           |    |
| 9.2.32 Code Register I (Address: 0x821h)                                                                |    |
| 9.2.33 Code Register II (Address: 0x822h)                                                               |    |
| 9.2.34 Code Register III (Address: 0x823h)                                                              |    |
| 9.2.35 IF Calibration Register I (Address: 0x824h)                                                      |    |
| 9.2.36 IF Calibration Register II (Address: 0x825h)                                                     |    |
| 9.2.37 VCO current Calibration Register (Address: 0x826h)                                               |    |
| 9.2.38 VCO Single band Calibration Register I (Address: 0x827h)                                         |    |
| 9.2.39 VCO Single band Calibration Register II (Address: 0x828h)                                        |    |
| 9.2.40 Battery detect Register (Address: 0x829h)                                                        |    |
| 9.2.41 TX test Register (Address: 0x82Ah)                                                               |    |
| 9.2.42 Rx DEM test Register I (Address: 0x02AII)                                                        |    |
| 9.2.42 RX DEM test Register II (Address: 0x82Ch)                                                        |    |
| 0.2.70 NA DENTIGOLINGYISIGI II (MUUIGOO. VAUZOII)                                                       |    |

# A8105



| 9.2.44 Charge Pump Current Register (Address: 0x82Dh)                                             |          |
|---------------------------------------------------------------------------------------------------|----------|
| 9.2.45 Crystal test Register (Address: 0x82Eh)                                                    |          |
| 9.2.46 PLL test Register (Address: 0x82Fh)                                                        |          |
| 9.2.47 VCO test Register I (Address: 0x830h)                                                      |          |
| 9.2.48 VCO test Register II (Address: 0x831h)                                                     |          |
| 9.2.49 IFAT Register (Address: 0x832h)                                                            | 33       |
| 9.2.50 RFT Test Register I(Address: 0x833h)                                                       |          |
| 9.2.50 RFT Test Register II(Address: 0x834h)                                                      |          |
| 9.2.50 RFT Test Register III(Address: 0x835h)                                                     |          |
| 9.2.50 RFT Test Register IV(Address: 0x836h)                                                      |          |
| 9.2.50 RFT Test Register V(Address: 0x837h)                                                       |          |
| 9.2.50 Channel Index Register (Address: 0x838h)                                                   |          |
| 9.2.50 CRC Register 1(Address: 0x839h)                                                            |          |
| 9.2.50 CRC Register 2(Address: 0x83Ah)                                                            |          |
| 9.2.50 CRC Register 3(Address: 0x83Bh)                                                            |          |
| 9.2.50 CRC Register 4(Address: 0x83Ch)                                                            |          |
| 9.2.50 CRC Register 5(Address: 0x83Dh)                                                            | 35       |
| 9.2.50 CRC Register 6(Address: 0x83Eh).                                                           | 35       |
| 9.2.51 VCO Single band Calibration Register I (Address: 0x83Fh).                                  | 35       |
| 9.2.52 VCO deviation Calibration Register I(Address: 0x840h)                                      | 35       |
| 9.2.53 VCO deviation Calibration Register II(Address: 0x841h)                                     |          |
| 9.2.54 VCO deviation Calibration Register III(Address: 0x842h)                                    | 36       |
| 9.2.55 ADC Control Register II(Address: 0x843h)                                                   | 30       |
| 9.2.56 WOR Register(Address: 0x844h)                                                              |          |
| 9.2.57 WOT Register(Address: 0x844h)<br>RCTS: Internal / External 32.768k Hz oscillator selection | 37       |
| 9.2.58 Channel Group Register I (Address: 0x845h)                                                 |          |
| 9.2.59 Channel Group Register II (Address: 0x846h)                                                | 37       |
| 9.2.60 Charge Pump Current Register II (Address: 0x847h)                                          |          |
| 9.2.60 Charge Fullip Culterit Register (Address: 0x6471)                                          |          |
| 9.2.62 Internal Capacitance Register (Address: 0x849h)                                            |          |
| 9.2.63 RX Detection Register (Address: 0x84Ah)                                                    | 30<br>38 |
| 9.2.63 ID Register 0 (Address: 0x84Bh).                                                           | 30<br>38 |
| 9.2.63 ID Register 1 (Address: 0x84Ch)                                                            |          |
| 9.2.63 ID Register 2 (Address: 0x84Dh)                                                            |          |
| 9.2.63 ID Register 3 (Address: 0x84Eh).                                                           |          |
| 9.2.63 DID Register 0 (Address: 0x84Fh)                                                           |          |
| 9.2.63 DID Register 1 (Address: 0x850h)                                                           |          |
| 9.2.63 DID Register 2 (Address: 0x851h)                                                           |          |
| 9.2.63 DID Register 3 (Address: 0x852h)                                                           |          |
| 9.2.63 EXT Register 1 (Address: 0x853h)                                                           |          |
| 9.2.63 EXT Register 2 (Address: 0x854h)                                                           |          |
| 9.2.63 EXT Register 3 (Address: 0x855h)                                                           |          |
| 9.2.63 EXT Register 4 (Address: 0x856h)                                                           |          |
| 9.2.63 ADC Control Register (Address: 0x857h)                                                     | 40       |
| 9.2.63 ADC Value Register 1 (Address: 0x858h)                                                     | 40       |
| 9.2.63 ADC Value Register 2 (Address: 0x859h)                                                     |          |
| 9.2.63 ADC Value Register 3 (Address: 0x85Ah)                                                     |          |
| 10.SOC Architectural Overview                                                                     |          |
| 10.1 Pipeline 8051 CPU                                                                            | 42       |
| 10.2 Memory Organization                                                                          | 42       |
| 10.2.1 Program memory                                                                             | 42       |
| 10.2.2 Data memory                                                                                | 43       |
| 10.2.3 General Purpose Registers                                                                  | 43       |
| 10.2.4 Bit Addressable Locations                                                                  | 43       |
| 10.2.5 Special Function Registers                                                                 | 43       |
| 10.2.6 Stack                                                                                      |          |
| 10.2.7 Data Pointer Register                                                                      | 43       |
| 10.2.8 RF Registers, RF FIFO and AES FIFO                                                         |          |
| 10.3 Instruction set                                                                              | 15       |
| 10.4 Interrupt handler                                                                            |          |

# AMICCOM

| 10.4.1 FUNCTIONALITY                                                    | 48 |
|-------------------------------------------------------------------------|----|
| 10.5 Reset Circuit51                                                    |    |
| 11.2 FUNCTIONALITY                                                      | 53 |
| 12 Timer 0 & 1 &2                                                       |    |
| 12.1 Timer 0 & 1 PINS DESCRIPTION                                       | 57 |
| 12.2 Timer 0 & 1 FUNCTIONALITY                                          |    |
| 12.2.1 OVERVIEW                                                         |    |
| 12.2.2 Timer 0 & 1 Registers                                            | 57 |
| 12.2.3 Timer 0 – Mode 0                                                 |    |
| 12.2.4 Timer 0 – Mode 1                                                 |    |
| 12.2.5 Timer 0 – Mode 2                                                 |    |
| 12.2.6 Timer 0 – Mode 3                                                 |    |
| 12.2.7 Timer 1 – Mode 0                                                 |    |
| 12.2.8 Timer 1 – Mode 1                                                 |    |
| 12.2.9 Timer 1 – Mode 2                                                 |    |
| 12.2.10 Timer 1 – Mode 3                                                |    |
| 12.3 Timer2 PINS DESCRIPTION                                            |    |
| 12.4 Timer2 FUNCTIONALITY                                               |    |
| 12.4.1 OVERVIEW                                                         |    |
| 12.4.2 Timer 2 Registers                                                |    |
| 13. UART 0,1                                                            |    |
| 13.1 UART0/1 PINS DESCRIPTION                                           | 65 |
| 13.2 FUNCTIONALITY                                                      |    |
| 13.3 OPERATING MODES                                                    | 68 |
| 13.3.1 UARTO MODE 0, SYNCHRONOUS.                                       | 68 |
| 13.3.2 UARTO MODE 1, 8-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE |    |
| 13.3.3 UARTO MODE 2, 9-BIT UART, FIXED BAUD RATE                        |    |
| 13.3.4 UARTO MODE 3, 9-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE |    |
|                                                                         |    |
|                                                                         | 69 |
| 13.3.6 UART1 MODE 1, 8-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE | 70 |
| 13.3.7 UART1 MODE 2, 9-BIT UART, FIXED BAUD RATE                        | 70 |
| 13.3.8 UART1 MODE 3, 9-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE |    |
| 14. IIC interface                                                       |    |
| 14.1 Master mode I <sup>2</sup> C                                       | 71 |
| 14.1.1 I <sup>2</sup> C REGISTERS                                       |    |
| 14.2.4 I2C MASTER MODULE AVAILABLE SPEED MODES                          | 74 |
| 14.2.5 I2C MASTER MODULE AVAILABLE COMMAND SEQUENCES                    | 75 |
| 14.3 I2C MASTER MODULE INTERRUPT GENERATION                             | 82 |
| 14.5 Slave mode I <sup>2</sup> C                                        | 82 |
| 14.5.1 I2C MODULE INTERNAL REGISTERS                                    |    |
| 14.7 AVAILABLE 12C MODULE TRANSMISSION MODES                            |    |
| 14.7.1 I <sup>2</sup> C mo <mark>du</mark> le SINGLE RECEIVE            | 84 |
| 14.7.2 I <sup>2</sup> C module SINGLE SEND                              |    |
| 14.7.3 I <sup>2</sup> C module BURST RECEIVE                            | 84 |
| 14.7.4 I <sup>2</sup> C module BURST SEND                               | 85 |
| 14.7.5 AVAILABLE I <sup>2</sup> C module COMMAND SEQUENCES FLOWCHART    |    |
| 14.8 I2C MODULE INTERRUPT GENERATION                                    | 86 |
| 15. SPI interface                                                       | 88 |
| 15.1 KEY FEATURES                                                       |    |
| 15.2 SPI PINS DESCRIPTION                                               |    |
| 15.3 SPI HARDWARE DESCRIPTION                                           |    |
| 15.3.1 BLOCK DIAGRAM                                                    | 89 |
| 15.3.2 INTERNAL REGISTERS                                               | 90 |
| 15.4 MASTER OPERATIONS                                                  |    |
| 15.4.1 MASTER MODE ERRORS                                               | 92 |
| 15.5 SLAVE OPERATIONS                                                   | 93 |
| 15.5.1 SLAVE MODE ERRORS                                                | 93 |
| 15.6 CLOCK CONTROL LOGIC                                                | 94 |
| 15.6.1 SPI CLOCK PHASE AND POLARITY CONTROLS                            | 94 |
| 15.6.2 SPI MODULE TRANSFER FORMATS                                      |    |
| 15.6.3 CPHA EQUALS ZERO TRANSFER FORMAT                                 |    |

# A8105



| 15.6.4 CPHA EQUALS ONE TRANSFER FORMAT.       95         15.7 SPI DATA TRANSFER BEGINNING PERIOD (INITIATION DELAY).       95         15.7.1 TRANSFER ENDING PERIOD       97         15.8 1TIMING DIAGRAMS.       99         15.8 1MING DIAGRAMS.       99         15.8 1 MASTER TRANSMISSION.       99         15.8.1 MASTER TRANSMISSION.       99         15.8 2 SLAVE TRANSMISSION.       99         15.8 2 SLAVE TRANSMISSION.       99         15.9 PM MDULLE INTERRUPT GENERATION.       99         16. PVM.       98         16.1 PWM FUNCTIONALITY.       98         16.1 PWM Registers.       99         17.ADC (Analog to Digital Converter).       100         17.2 Carrier Detect.       100         17.2 Carrier Detect.       100         18 Battery Detect.       100         19 Power Management       100         22 In Circuit Enulator (ICE).       100         23 Application circuit.       111         24 Abbreviations.       111         25 Ordering Information.       111         26 Televel Information. |                                       |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|
| 15.7.1 TRANSFER BEGINNING PERIOD (INITIATION DELAY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |     |
| 15.7.2 TRANSFER ENDING PERIOD       .92         15.8 TIMING DIAGRAMS       .92         15.8.1 MASTER TRANSMISSION       .92         15.8.2 SLAVE TRANSMISSION       .96         15.9 SPI MODULE INTERRUPT GENERATION       .96         16. PWM       .96         16.1 PWM FUNCTIONALITY       .96         16.1.1 PWM Registers       .96         17. ADC (Analog to Digital Converter)       .100         17.1 RSSI Measurement       .100         17.2 Carrier Detect       .100         18. Battery Detect       .100         19 Power Management       .100         21. Flash memory controller       .100         22. 2 ICK Key feature       .100         23. Application circuit       .111         26. Ordering Information       .111         27. Top Marking Information       .111         28. Reflow Profile       .111         29. Tape Reel Information       .111                                                                                                                                                                                                                                                                                                      |                                       |     |
| 15.8 TIMING DIAGRAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |     |
| 15.8.1 MASTER TRANSMISSION.       96         15.8.2 SLAVE TRANSMISSION.       96         15.9 SPI MODULE INTERRUPT GENERATION.       96         16. PWM.       98         16.1 PWM FUNCTIONALITY.       98         16.1 PWM Registers.       96         17. ADC (Analog to Digital Converter).       100         17.1 RSSI Measurement.       100         17.2 Carrier Detect.       100         18. Battery Detect.       100         19 Power Management       100         21. Flash memory controller       100         21. Flash memory controller       100         22. 2 IC Key feature       100         23. Application circuit       11         24. Abbreviations.       11         25. Ordering Information.       11         26. Package Information.       11         27. Top Marking Information.       11         28. Reflow Profile       114         29. Tape Reel Information.       11                                                                                                                                                                                                                                                                             |                                       |     |
| 15.8.2 SLAVE TRANSMISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |     |
| 15.9 SPI MODULE INTERRUPT GENERATION.       .96         16. PWM.       .98         16.1 PWM FUNCTIONALITY.       .96         17. ADC (Analog to Digital Converter).       .100         17.1 RSSI Measurement.       .100         17.2 Carrier Detect.       .100         18. Battery Detect.       .100         19 Power Management       .100         20 A8105 RF.       .100         21. Flash memory controller       .100         22. PIN define       .108         22.2 ICE Key feature       .100         23. Application circuit.       .111         24. Abbreviations.       .111         25. Ordering Information.       .111         27. Top Marking Information.       .111         28. Reflow Profile       .111         29. Tape Reel Information.       .111                                                                                                                                                                                                                                                                                                                                                                                                           | 15.8.1 MASTER TRANSMISSION            |     |
| 16. PWM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.8.2 SLAVE TRANSMISSION             |     |
| 16.1 PWM FUNCTIONALITY.       .98         16.1.1 PWM Registers       .98         17. ADC (Analog to Digital Converter)       .100         17.1 RSSI Measurement       .100         17.2 Carrier Detect       .102         18. Battery Detect       .102         19 Power Management       .102         20 A8105 RF       .106         21. Flash memory controller       .106         22. In Circuit Emulator (ICE)       .106         22. ICE Key feature       .106         23. Application circuit       .107         24. Abbreviations       .117         25. Ordering Information       .117         26. Package Information       .117         27. Top Marking Information       .117         28. Reflow Profile       .114         29. Tape Reel Information       .114                                                                                                                                                                                                                                                                                                                                                                                                        | 15.9 SPI MODULE INTERRUPT GENERATION  |     |
| 16.1.1 PWM Registers       .96         17. ADC (Analog to Digital Converter)       .100         17.1 RSSI Measurement       .100         17.2 Carrier Detect       .102         18. Battery Detect       .102         19 Power Management       .102         20 A8105 RF       .106         21. Flash memory controller       .106         22. In Circuit Emulator (ICE)       .106         22. 2 ICE Key feature       .106         23. Application circuit       .116         24. Abbreviations       .111         25. Ordering Information       .111         26. Package Information       .111         27. Top Marking Information       .111         28. Reflow Profile       .111         29. Tape Reel Information       .111                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. PWM                               |     |
| 17. ADC (Analog to Digital Converter)       100         17.1 RSSI Measurement       100         17.2 Carrier Detect       102         18. Battery Detect       102         19 Power Management       102         20 A8105 RF       102         21. Flash memory controller       106         22.2 PIN define       108         22.2 PIN define       108         22.2 ICE Key feature       106         23. Application circuit.       111         25. Ordering Information.       111         26. Package Information.       111         27. Top Marking Information.       111         28. Reflow Profile.       114         29. Tape Reel Information.       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.1 PWM FUNCTIONALITY                |     |
| 17.1 RSSI Measurement       100         17.2 Carrier Detect       102         18. Battery Detect       102         19 Power Management       102         20 A8105 RF       106         21. Flash memory controller       106         22. In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       108         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       111         27. Top Marking Information       111         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.1.1 PWM Registers                  |     |
| 17.2 Carrier Detect       102         18. Battery Detect       103         19 Power Management       104         20 A8105 RF       106         21. Flash memory controller       106         22. In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       106         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       112         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17. ADC (Analog to Digital Converter) |     |
| 17.2 Carrier Detect       102         18. Battery Detect       103         19 Power Management       104         20 A8105 RF       106         21. Flash memory controller       106         22. In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       106         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       112         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |     |
| 18. Battery Detect       103         19 Power Management       104         20 A8105 RF       105         21. Flash memory controller       106         22 In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       106         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       112         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |     |
| 19 Power Management       104         20 A8105 RF       105         21. Flash memory controller       106         22 In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       106         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       112         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |     |
| 20 A8105 RF.       105         21. Flash memory controller       106         22 In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       109         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       112         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |     |
| 21. Flash memory controller       106         22 In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       109         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       111         27. Top Marking Information       112         28. Reflow Profile       114         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |     |
| 22 In Circuit Emulator (ICE)       108         22.2 PIN define       108         22.2 ICE Key feature       109         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       113         28. Reflow Profile       114         29. Tape Reel Information       115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |     |
| 22.2 PIN define       108         22.2 ICE Key feature       109         23. Application circuit       110         24. Abbreviations       111         25. Ordering Information       111         26. Package Information       111         27. Top Marking Information       111         28. Reflow Profile       112         29. Tape Reel Information       114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |     |
| 22.2 ICE Key feature10823. Application circuit11024. Abbreviations11125. Ordering Information11126. Package Information11127. Top Marking Information11228. Reflow Profile11229. Tape Reel Information112115116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |     |
| 23. Application circuit.       110         24. Abbreviations.       111         25. Ordering Information.       111         26. Package Information.       112         27. Top Marking Information.       113         28. Reflow Profile.       114         29. Tape Reel Information.       115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.2 ICE Key feature                  | 109 |
| 24. Abbreviations.       11         25. Ordering Information.       11         26. Package Information.       11         27. Top Marking Information.       11         28. Reflow Profile.       11         29. Tape Reel Information.       11         11       11         29. Tape Reel Information.       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23 Application circuit                | 110 |
| 25. Ordering Information       111         26. Package Information       112         27. Top Marking Information       113         28. Reflow Profile       114         29. Tape Reel Information       115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 Abbreviations                      | 111 |
| 26. Package Information       112         27. Top Marking Information       113         28. Reflow Profile       114         29. Tape Reel Information       115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |     |
| 27. Top Marking Information.       113         28. Reflow Profile.       114         29. Tape Reel Information.       115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |     |
| 28. Reflow Profile   114     29. Tape Reel Information   115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Top Marking Information            | 113 |
| 29. Tape Reel Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28 Reflow Profile                     | 114 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30. FIOUUCI Status                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |     |



# \_\_\_\_\_

A8105

# 2.4GHz FSK/GFSK SOC

# 1. General Description

A8105 is a high performance and low cost 2.4GHz FSK/GFSK system-on-chip (SOC) wireless transceiver. With on chip fraction-N synthesizer, it can support the application of data rate from 2Kbps to 1Mbps and frequency hopping system. This device integrates high speed pipeline 8051 MCU, 16KBytes In-system programmable flash memory, 2KB SRAM, various powerful functions and excellent performance of a leading 2.4GHz FSK/GFSK RF transceiver. It can be operated with wide voltage from 1.8V ~ 3.6V. A8105 has various operating modes, making it highly suited for systems where ultra-low power consumption is required. The device is in QFN5X5 40 pin package.

# 2. Typical Applications

- Wireless keyboard and mouse
- Wireless keyboard and mid
   Wireless toy and gaming
- Helicopter and airplane radio controller

- 2400 ~ 2483.5 MHz ISM frequency hopping system
- Smart remote controller
- Home and building automation

# 3. Feature

- Package size (QFN5 X5, 40 pins).
- High performance pipeline complicated 8051
- Operation clock: 1, 1/2, 1/4, 1/8, 1/16, 1/32 of crystal oscillator.
- 16KB Flash memory with copy protection, 2KB SARM
- UART, I<sup>2</sup>C, SPI serial communication
- Three 16/8-bit counter/timers
- Two Channel PWM
- Watchdog timer
- Sleep timer
- In-Circuit Debugger
- In-System programming/ In-Application programming
- 24 GPIO
- Low RX current consumption (14mA)
- Low TX current consumption (16mA @ 0dBm, 18mA @ 3.5 dBm output power).
- Deep sleep current (1.2 uA)
- Low sleep current (5 uA)
- Frequency band: 2400 2483MHz.
- FSK and GFSK modulation
- High sensitivity:
  - ♦ -96dBm at 500Kbps data rate
  - -92dBm at 1Mbps data rate
- Programmable data rate 2K ~ 1Mbps.
- Fast settling time synthesizer for frequency hopping system.
- Built-in thermal sensor for monitoring relative temperature.
- Built-in one channel 8-bits ADC for external analog voltage (0V ~ 1.2V).
- Built-in eight channels 12-bits ADC for general purpose analog input (0V ~ 1.8 V).
- Built-in Low Battery Detector.
- Support low cost crystal (8 /12 / 16 / 24MHz).
- Low cost BLE application (without AES)
- Easy to use.
  - Change frequency channel by ONE register setting.
  - 8-bits Digital RSSI for clear channel indication.
  - Auto RSSI measurement.
  - Auto WOR (wake up when receive RX packet).
  - Auto WOT (wake up to transmit TX packet).
  - Auto Calibrations.
  - Auto IF function.
  - Auto Frequency Compensation.
  - Auto CRC Check.
  - ♦ Auto FEC by (7, 4) Hamming code (1 bit error correction / code word).
  - Data Whitening for encryption and decryption.
  - Separated 64 bytes RX and TX FIFO.



A8105

2.4GHz FSK/GFSK SOC

# 4. Pin Configurations

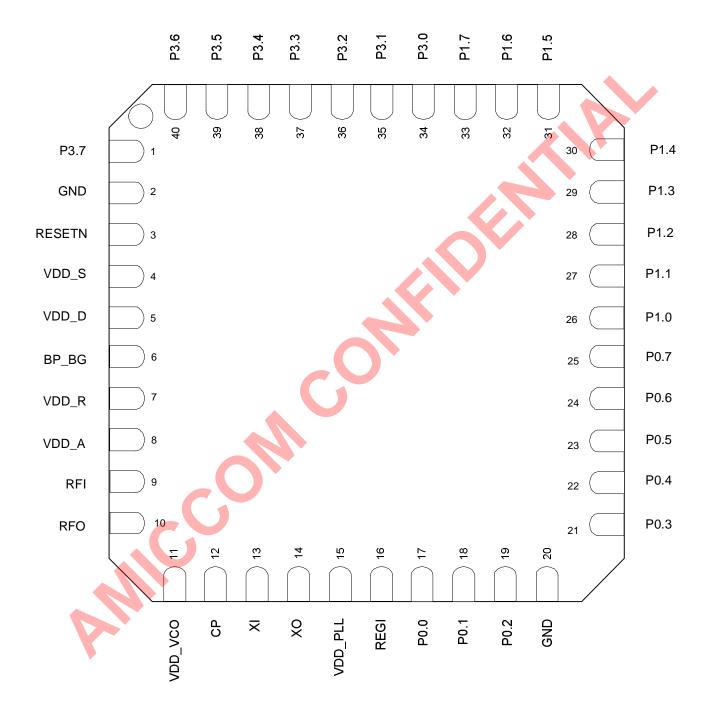



Fig 4-1. A8105 QFN 5x5 Package Top View



# 5. Pin Description (I: input; O: output, I/O: input or output)

| <u>5. Pin D</u> | . Pin Description (I: input; O: output, I/O: input or output) |        |                             |  |  |  |  |  |  |  |
|-----------------|---------------------------------------------------------------|--------|-----------------------------|--|--|--|--|--|--|--|
| Pin No.         | Symbol                                                        | I/O    | Function Description        |  |  |  |  |  |  |  |
| 1               | P3.7                                                          | DIO/AI | RTC_O                       |  |  |  |  |  |  |  |
| 2               | GND                                                           | DIO    | Ground                      |  |  |  |  |  |  |  |
| 3               | RESETN                                                        | DI     | RESETN                      |  |  |  |  |  |  |  |
| 4               | VDD_S                                                         | AO     | Voltage supply for SARM     |  |  |  |  |  |  |  |
| 5               | VDD_D                                                         | AO     | VDD_D                       |  |  |  |  |  |  |  |
| 6               | BP_BG                                                         | AO     | BP_BG                       |  |  |  |  |  |  |  |
| 7               | VDD_R                                                         | AO     | VDD_R                       |  |  |  |  |  |  |  |
| 8               | VDD_A                                                         | AO     | VDD_A                       |  |  |  |  |  |  |  |
| 9               | RFI                                                           | AI     | RFI                         |  |  |  |  |  |  |  |
| 10              | RFO                                                           | AO     | RFO                         |  |  |  |  |  |  |  |
| 11              | VDD_VCO                                                       | AI     | VDD_VCO                     |  |  |  |  |  |  |  |
| 12              | CP                                                            | AO     | СР                          |  |  |  |  |  |  |  |
| 13              | XI                                                            | AI     | XI                          |  |  |  |  |  |  |  |
| 14              | XO                                                            | AO     | XO                          |  |  |  |  |  |  |  |
| 15              | VDD_PLL                                                       | AO     | VDD_PLL                     |  |  |  |  |  |  |  |
| 16              | REGI                                                          | AI     | REGI                        |  |  |  |  |  |  |  |
| 17              | P0.0                                                          | DIO    | SPI_SCLK                    |  |  |  |  |  |  |  |
| 18              | P0.1                                                          | DIO    | SPI_MOSI                    |  |  |  |  |  |  |  |
| 19              | P0.2                                                          | DIO    | SPI_MISO                    |  |  |  |  |  |  |  |
| 20              | <mark>GND</mark>                                              | DIO    | GND                         |  |  |  |  |  |  |  |
| 21              | P0.3                                                          | DIO    | SPI_SSEL                    |  |  |  |  |  |  |  |
| 22              | P0.4                                                          | DIO    | GPIO/ ICE mode              |  |  |  |  |  |  |  |
| 23              | P0.5                                                          | DIO    | I2C_SCL                     |  |  |  |  |  |  |  |
| 24              | P0.6                                                          | DIO    | I2C_SDA                     |  |  |  |  |  |  |  |
| 25              | P0.7                                                          | DIO    | INT2 /GIO1                  |  |  |  |  |  |  |  |
| 26              | P1.0                                                          | DIO    | Timer2_T2                   |  |  |  |  |  |  |  |
| 27              | P1.1                                                          | DIO    | Timer2_T2EX                 |  |  |  |  |  |  |  |
| 28              | P1.2                                                          | DIO    | INT3 /GIO2                  |  |  |  |  |  |  |  |
| 29              | P1.3                                                          | DIO    | INT4/ CKO                   |  |  |  |  |  |  |  |
| 30              | P1.4                                                          | DIO    | TTAG_TTDIO                  |  |  |  |  |  |  |  |
| 31              | P1.5                                                          | DIO    | TTAG_TTCK                   |  |  |  |  |  |  |  |
| 32              | P1.6                                                          | DIO    | PWM0/ADC4                   |  |  |  |  |  |  |  |
| 33              | P1.7                                                          | DIO    | PWM1/ADC5                   |  |  |  |  |  |  |  |
| 34              | P3.0                                                          | DIO    | UART0_RX/ <mark>ADC6</mark> |  |  |  |  |  |  |  |
| 35              | P3.1                                                          | DIO    | UART0_TX/ADC7               |  |  |  |  |  |  |  |
| 36              | P3.2                                                          | DIO/AI | INT0/ADC0                   |  |  |  |  |  |  |  |
| 37              | P3.3                                                          | DIO/AI | INT1/ADC1                   |  |  |  |  |  |  |  |
| 38              | P3.4                                                          | DIO/AI | Timer0_T0/ADC2              |  |  |  |  |  |  |  |
| 39              | P3.5                                                          | DIO/AI | Timer1_T1/ADC3              |  |  |  |  |  |  |  |
| 40              | P3.6                                                          | DIO/AI | RTC_I                       |  |  |  |  |  |  |  |
|                 |                                                               |        |                             |  |  |  |  |  |  |  |



# 6. Chip Block Diagram

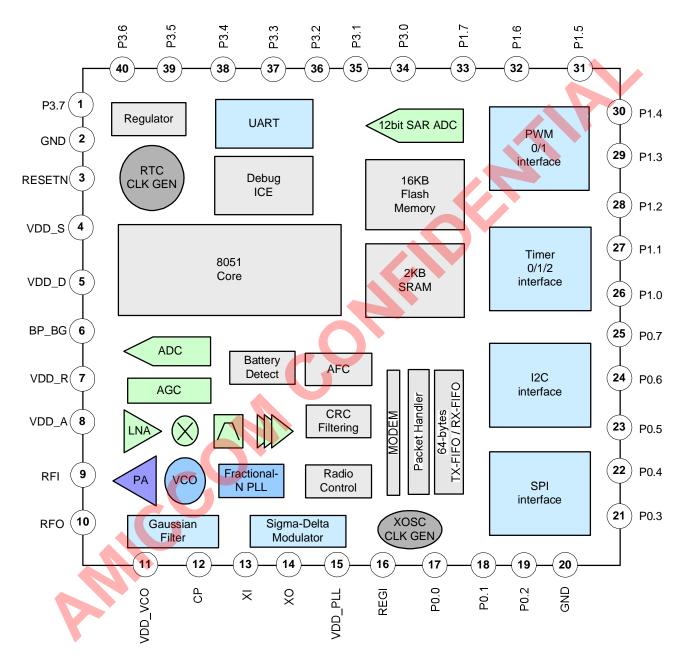



Fig 6-1. A8105 Block Diagram



# 7. Absolute Maximum Ratings

| Parameter                        | With respect to | Rating         | Unit |
|----------------------------------|-----------------|----------------|------|
| Supply voltage range (VDD)       | GND             | -0.3 ~ 3.6     | V    |
| Digital IO pins range            | GND             | -0.3 ~ VDD+0.3 | V    |
| Voltage on the analog pins range | GND             | -0.3 ~ 2.1     | V    |
| Input RF level                   |                 | 14             | dBm  |
| Storage Temperature range        |                 | -55 ~ 125      | °C   |
| ESD Rating                       | НВМ             | ± 2K           | V    |
|                                  | MM              | ± 100          | V    |

\*Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\*Device is ESD sensitive. Use appropriate ESD precautions. HBM (Human Body Mode) is tested under MIL-STD-883F Method 3015.7. MM (Machine Mode) is tested under JEDEC EIA/JESD22-A115-A. \*Device is Moisture Sensitivity Level III (MSL 3).





# 8. Electrical Specification

# (Ta=25°C, REGI = 2.3V, internal regulator voltage = 1.8V, IF bandwidth = 500KHz, unless otherwise noted)

| Parameter                      | Description                               | Min. | Туре     | Max.   | Unit |
|--------------------------------|-------------------------------------------|------|----------|--------|------|
| General                        |                                           |      |          |        |      |
| Storage Temperature            |                                           | -55  |          | 125    | °C   |
| Operating Temperature          |                                           | -40  |          | 85     | °C   |
| Current Consumption            | Normal                                    |      | TBD      |        | mA   |
| (Digital only)                 | PMM                                       |      | TBD      |        | mA   |
|                                | Idle (No MCU clock)                       |      | TBD      |        | mA   |
|                                | Sleep (WOR /TWOR wake)                    |      | 5.5      |        | uA   |
|                                | Deep Sleep                                |      | 1.2      |        | uA   |
| Current Consumption            | Standby Mode                              |      | 3        |        | mA   |
| (RF only)                      | PLL Mode                                  |      | 9        |        | mA   |
|                                | RX Mode (AGC Off)                         |      | 13       |        | mA   |
|                                | RX Mode (AGC On)                          |      | 14       |        | mA   |
|                                | TX Mode (@-6dBm output)                   |      | 12       |        | mA   |
|                                | TX Mode (@0dBm output)                    |      | 14       |        | mA   |
|                                | TX Mode (@5dBm output)                    |      | 17       |        | mA   |
| Synthesizer block (includes cr | ystal oscillator, PLL and VCO.)           |      |          |        |      |
| Crystal start up time          |                                           |      | 0.6      |        | ms   |
| Crystal frequency              |                                           |      | MHz      |        |      |
| Crystal ESR                    | Chip (-R) target (360 ohm)                |      | ohm      |        |      |
| VCO Operation Frequency        |                                           | 2400 |          | 2483.5 | MHz  |
| PLL phase noise                | Offset 100k                               |      | 80       |        | dBc  |
|                                | Offset 500K                               |      | 95       |        |      |
|                                | Offset 1M                                 |      | 105      |        |      |
| PLL settling time              | @Loop BW = 500Khz                         |      | 60       |        | μS   |
| тх                             |                                           |      |          |        |      |
| Output power range             |                                           | -10  | 0        | 10     | dBm  |
| Out Band Spurious Emission 1   | 30MHz~1GHz                                |      |          | -36    | dBm  |
|                                | 1GHz~12.75GHz                             |      |          | -30    | dBm  |
|                                | 1.8GHz~ 1.9GHz                            |      |          | -47    | dBm  |
|                                | 5.15GHz~ 5.3GHz                           |      |          | -47    | dBm  |
| Frequency deviation            | 500Kbps                                   |      | 186K     |        | Hz   |
|                                | 1M                                        |      | 250K     |        | Hz   |
| Data rate                      |                                           | 2K   |          | 1M     | Bps  |
| TX settling time               | Loop bandwidth 500K                       |      | 50       |        | μS   |
| RX                             |                                           |      |          |        |      |
| Receiver sensitivity           | Data rate 1M (F <sub>IF</sub> = 1MHz)     |      | -92      |        | dBm  |
| @ BER = 0.1%                   | Data rate 500K (F <sub>IF</sub> = 500KHz) | 1    | -96      |        | dBm  |
|                                | Data rate 25K (F <sub>IF</sub> = 500KHz)  | 1    | TBD      |        | dBm  |
|                                | Data rate 2K (F <sub>IF</sub> = 500KHz)   | 1    | TBD      |        | dBm  |
| IF frequency bandwidth         |                                           |      | 500/1000 |        | KHz  |
| IF center frequency            |                                           | 1    | 500/1000 |        | KHz  |
| Interference                   | Co-Channel (C/I <sub>0</sub> )            |      | 11       |        | dB   |



# A8105

# 2.4GHz FSK/GFSK SOC

|                                              | 1 <sup>st</sup> Adia    | acent Channel (C/I1)              |          | 2   |         | dB  |
|----------------------------------------------|-------------------------|-----------------------------------|----------|-----|---------|-----|
|                                              | -                       | acent Channel (C/I <sub>2</sub> ) |          | -18 |         | dB  |
|                                              |                         | acent Channel (C/I <sub>3</sub> ) |          | -28 |         | dB  |
|                                              | -                       | . ,                               |          | -   |         | -   |
|                                              |                         | Image (C/I <sub>IM</sub> )        |          | -12 |         | dB  |
| Maximum Operating Input Power                |                         | input (BER=0.1%)                  |          |     | 0       | dBm |
| Spurious Emission                            |                         | 0MHz~1GHz                         |          |     | -57     | dBm |
|                                              | 10                      | GHz~12.75GHz                      |          |     | -47     |     |
| RSSI Range                                   |                         | @RF input                         | -105     |     | -50     | dBm |
| RX Ready Time <sup>*8</sup>                  |                         | Data rate < = 250 Kbps            |          | TBD |         | μS  |
| (PLL to WPLL + WPLL to RX)                   | LO fixed                | Data rate = 500 Kbps              |          | TBD |         | μS  |
|                                              |                         | Data rate = 1M bps                |          | TBD |         | μS  |
|                                              |                         | Data rate < = 250 Kbps            |          | TBD |         | μS  |
|                                              | Hopping                 | Data rate = 500 Kbps              |          | TBD |         | μS  |
|                                              |                         | Data rate = 1M bps                |          | TBD |         | μS  |
| 12Bit SAR ADC                                | •                       | •                                 |          |     |         |     |
| Input voltage range                          |                         |                                   | 0        |     | 1.8     | V   |
| External reference voltage                   |                         |                                   |          | 1.8 |         | V   |
| Input capacitor                              |                         |                                   |          | 25  |         | pF  |
| Bandwidth                                    |                         |                                   |          | 200 |         | KHz |
| EOB, effective number of bits                |                         |                                   |          | TBD |         | bit |
| SINAD, signal to noise and distortion        |                         |                                   |          | TBD |         | db  |
| Conversion time                              |                         |                                   | 80       |     | 5       | uS  |
| Current consumption                          |                         |                                   |          | 0.4 |         | mA  |
| SPI                                          |                         |                                   |          |     |         |     |
| SCK period                                   |                         |                                   |          | 1   |         | MHz |
| MISO setup                                   |                         |                                   | 10       |     |         | ns  |
| MISO hold                                    |                         |                                   | 10       |     |         | ns  |
| SCK to SSN high                              |                         |                                   |          | TBD |         | nd  |
| SCK to MISO                                  |                         |                                   |          | TBD |         | ns  |
| Regulator                                    |                         |                                   |          |     |         |     |
| Regulator settling time                      | Pin 19 con              | nected to 1nF                     |          | 450 |         | μS  |
| Band-gap reference voltage                   |                         |                                   |          | 1.2 |         | V   |
| Regulator output voltage                     |                         |                                   | 1.8      | 1.8 | 2.1     | V   |
| Digital IO DC characteristics                |                         |                                   | <u> </u> |     | ·       |     |
| High Level Input Voltage (V⊮)                |                         |                                   | 0.8*VDD  |     | VDD     | V   |
| Low Level Input Voltage (VIL)                |                         |                                   | 0        |     | 0.2*VDD | V   |
| High Level Output Voltage (V <sub>OH</sub> ) | @I <sub>OH</sub> = -0.5 | mA                                | VDD-0.4  |     | VDD     | V   |
| Source current                               | @VDD 3.0                |                                   |          | TBD |         | mA  |
| Low Level Output Voltage (VoL)               | @I <sub>OL</sub> = 0.5n |                                   | 0        |     | 0.4     | V   |
| Sink current                                 | @VDD 3.0                |                                   |          | TBD |         | mA  |

Note 1:



# 9. SFR & RFR(Radio Frequency Register)

A8105 contains standard 8051 SFRs(special function registers) and RFR (RF control registers). A8051's SFR location is almost the same as the standard 8052 SFR location. RFR is Radio Frequency Registers are located in XDATA spaces and located in 0x0800 ~ 0x08FF. For more detail information, please reference Section 9.2.

# 9.1 SFR Overview

|      | Table 9.1 A8105 Special Function Registers (SFRs) table |         |           |             |        |        |         |        |  |  |  |  |
|------|---------------------------------------------------------|---------|-----------|-------------|--------|--------|---------|--------|--|--|--|--|
|      | 0/8 1/9 2/A                                             |         | 3/B       | 3/B 4/C 5/D |        | 6/E    | 7/F     |        |  |  |  |  |
| 0xF8 | EIP                                                     | OSCCON  |           |             |        |        |         |        |  |  |  |  |
| 0xF0 | В                                                       | I2CSADR | I2CSCR    | I2CSBUF     | I2CMSA | I2CMCR | I2CMBUF | I2CMTP |  |  |  |  |
| 0xE8 | EIE                                                     |         |           |             | SPCR   | SPSR   | SPDR    | SSCR   |  |  |  |  |
| 0xE0 | ACC                                                     | P3OE    | P3PUN     | P3WUN       | SPCR1  | SPSR1  | SPDR1   | SSCR1  |  |  |  |  |
| 0xD8 | WDCON                                                   | P1OE    | P1PUN     | P1WUN       |        |        |         |        |  |  |  |  |
| 0xD0 | PSW                                                     | POOE    | POPUN     | POWUN       |        |        |         |        |  |  |  |  |
| 0xC8 | T2CON                                                   | T2IF    | RLDL      | RLDH        | TL2    | TH2    |         | DEVICE |  |  |  |  |
| 0xC0 | SCONI                                                   | SBUF1   |           |             |        |        |         |        |  |  |  |  |
| 0xB8 | IP                                                      | PCONE   | RSFLAG    | IOSEL       |        |        |         |        |  |  |  |  |
| 0xB0 | P3                                                      | PWM1CON | PWM1H     | PWM1L       |        |        |         |        |  |  |  |  |
| 0xA8 | IE                                                      | PWM0CON | PWM0H     | PWMOL       |        |        |         |        |  |  |  |  |
| 0xA0 | P2                                                      |         |           |             |        |        |         |        |  |  |  |  |
| 0x98 | SOCN0                                                   | SBUF0   | FLASHCTRL | FLASHMR     |        |        |         |        |  |  |  |  |
| 0x90 | P1                                                      | EIF     |           |             |        |        |         |        |  |  |  |  |
| 0x88 | TCON                                                    | TMOD    | TL0       | TL1         | TH0    | TH1    | CKCON   |        |  |  |  |  |
| 0x80 | PO                                                      | SP      | DPL0      | DPH0        | DPL1   | DPH1   | DPS     | PCON   |  |  |  |  |

: It means bit-addressable

. It means reserved.

Following are description of SFRs related to the operation of A8105 System Controller. Detailed descriptions of the remaining SFRs are including the sections of the datasheet associated with their corresponding system function. The arithmetic section of the processor performs extensive data manipulation and is comprised of the 8-bit arithmetic logic unit (ALU), an ACC(0xE0) register, B(0xF0) register and PSW(0xD0) register.

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| E0h<br>ACC   | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Accumulator A Register

The B register is used during multiply and divide operations. In other cases may be used as normal SFR.

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| F0h<br>B     | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |



## **B** Register

The ALU performs typical arithmetic operations as: addition, subtraction, multiplication, division and additional operations such as: increment, decrement, BCD-decimal-add-adjust and compare. Within logic unit are performance: AND, OR, Exclusive OR, complement and rotation. The Boolean processor performance the bit operations as: set, clear, complement, jump-if-not-set, jump-if-set-and-clear and move to/from carry.

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| D0h<br>PSW   | R/W | CY    | AC    | F0    | RS1   | RS2   | ٥٧    | F1    | Ρ     |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Program Status Word register

CY - Carry flag

AC - Auxiliary carry

F0 - General purpose flag 0

RS[1:0] - Register bank select bits

| 00 | - Bank 0, data address 0x00-0x07 |   |
|----|----------------------------------|---|
| 01 | Deals 4 data address 0:00 0:00   | _ |

|    | Barrie Ly abta Baarebb broo brot |
|----|----------------------------------|
| 10 | - Bank 2, data address 0x10-0x17 |

| 11 |  | Bank 3, | data | address | 0x18-0x1F |
|----|--|---------|------|---------|-----------|
|----|--|---------|------|---------|-----------|

OV - Overflow flag

F1 - General purpose flag 1

P - Parity flag

The PSW contains several bits that reflect the current state of the CPU.

# 9.2 RFR Overview

| Address /<br>Name    | R/W | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|----------------------|-----|---------|---------|---------|---------|---------|---------|---------|---------|
| 0x800h               | W   | RESETN  | FWPRN   | FRPRN   | ADC12RN |         | BFCRN   |         |         |
| Mode                 | R   | -       | FECF    | CRCF    | CER     | XER     | PLLER   | TRSR    | TRER    |
| 0x801h<br>MODEC1     | W   | STRB7   | STRB6   | STRB5   | STRB4   | STRB3   | STRB2   | STRB1   | STRB0   |
| 0x802h               | W   | DDPC    | ARSSI   | AIF     | DFCD    | WWSE    | FMT     | FMS     | ADCM    |
| MODEC2               | R   | DDPC    | ARSSI   | AIF     | CD      | WWSE    | FMT     | FMS     | ADCM    |
| 0x803h<br>Calc       | R/W |         | -       | -       | RSSC    | VDC     | VCC     | VBC     | FBC     |
| 0x804h<br>FIFO I     | W   | FEP7    | FEP6    | FEP5    | FEP4    | FEP3    | FEP2    | FEP1    | FEP0    |
| 0x805h<br>FIFO II    | W   | FPM1    | FPM0    | PSA5    | PSA4    | PSA3    | PSA2    | PSA1    | PSA0    |
| 0x806h<br>RC OSC I   | W   | WWS_SL7 | WWS_SL6 | WWS_SL5 | WWS_SL4 | WWS_SL3 | WWS_SL2 | WWS_SL1 | WWS_SL0 |
| 0x807h<br>RC OSC II  | W   | WWS_SL9 | WWS_SL8 | WWS_AC5 | WWS_AC4 | WWS_AC3 | WWS_AC2 | WWS_AC1 | WWS_AC0 |
| 0x808h<br>RC OSC III | W   | BBCKS1  | BBCKS0  | -       |         |         | RCOSC_E | TSEL    | TWWS_E  |
| 0x809h               | W   |         |         |         | WSEL1   | WSEL0   | MVS1    | MVS0    | ENCAL   |
| RC OSC IV            | R   | NUMLH11 | NUMLH10 | NUMLH9  | NUMLH8  |         | RCOC9   | RCOC8   | ENCAL   |
| 0x80Ah               | W   | MRCT9   | MRCT8   |         |         |         |         | MAN     | MCALS   |
| RC OSC V             | R   | NUMLH7  | NUMLH6  | NUMLH5  | NUMLH4  | NUMLH3  | NUMLH2  | NUMLH1  | NUMLH0  |
| 0x80Bh               | W   | MRCT7   | MRCT6   | MRCT5   | MRCT4   | MRCT3   | MRCT2   | MRCT1   | MRCT0   |
| RC OSC VI            | R   | RCOC7   | RCOC6   | RCOC5   | RCOC4   | RCOC3   | RCOC2   | RCOC1   | RCOC0   |

|        |        |        |        |         | A81             | 05        |
|--------|--------|--------|--------|---------|-----------------|-----------|
|        |        |        | 2.4GH  | z FSK/0 | GFSK S          | <u>0C</u> |
|        |        |        |        |         |                 |           |
| CKOS2  | CKOS1  | CKOS0  | СКОІ   | CKOE    | <del>SCKI</del> |           |
| GIO1S3 | GIO1S2 | GIO1S1 | GIO1S0 | GIO1I   | GIO1OE          |           |
| GIO2S3 | GIO2S2 | GIO2S1 | GIO2S0 | GIO2I   | GIO2OE          |           |
| GRC1   | GRC0   | -      | CSC0   | CGS     | XS              |           |
| SDR5   | SDR4   | SDR3   | SDR2   | SDR1    | SDR0            |           |
| CHN5   | CHN4   | CHN3   | CHN2   | CHN1    | CHNO            |           |
| RRC0   | CHR3   | CHR2   | CHR1   | CHR0    | IP8             |           |
| IP5    | IP4    | IP3    | IP2    | IP1     | IP0             |           |
| FP13   | FP12   | FP11   | FP10   | FP9     | FP8             |           |
| AC13   | AC12   | AC11   | AC10   | AC9     | AC8             |           |
| FP5    | FP4    | FP3    | FP2    | FP1     | FP0             |           |
|        |        |        |        |         |                 |           |

| 0x80Dh<br>GPIO1 Pin I             | W   | VGC1            | VGC0    | GIO1S3         | GIO1S2 | GIO1S1 | GIO1S0  | GIO1I   | GIO10E  |
|-----------------------------------|-----|-----------------|---------|----------------|--------|--------|---------|---------|---------|
| 0x80Eh                            |     |                 |         |                |        |        |         |         |         |
| GPIO2 Pin II                      | W   | HBW             |         | GIO2S3         | GIO2S2 | GIO2S1 | GIO2S0  | GIO2I   | GIO2OE  |
| 0x80Fh<br>Clock                   | R/W | GRC3            | GRC2    | GRC1           | GRC0   | -      | CSC0    | CGS     | XS      |
| 0x810h<br>Data rate               | R/W | SDR7            | SDR6    | SDR5           | SDR4   | SDR3   | SDR2    | SDR1    | SDR0    |
| 0x811h<br>PLL I                   | R/W | CHN7            | CHN6    | CHN5           | CHN4   | CHN3   | CHN2    | CHN1    | CHNO    |
| 0x812h<br>PLL II                  | R/W | DBL             | RRC1    | RRC0           | CHR3   | CHR2   | CHR1    | CHR0    | IP8     |
| 0x813h<br>PLL III                 | R/W | IP7             | IP6     | IP5            | IP4    | IP3    | IP2     | IP1     | IP0     |
| 0x814h                            | W   | FP15            | FP14    | FP13           | FP12   | FP11   | FP10    | FP9     | FP8     |
| PLL IV                            | R   | -               | AC14    | AC13           | AC12   | AC11   | AC10    | AC9     | AC8     |
| 0x815h                            | W   | FP7             | FP6     | FP5            | FP4    | FP3    | FP2     | FP1     | FP0     |
| PLL V                             | R   | AC7             | AC6     | AC5            | AC4    | AC3    | AC2     | AC1     | AC0     |
| 0x816h<br>TX I                    | W   | GDR             | TMDE    | TXDI           | TME    | FS     | FDP2    | FDP1    | FDP0    |
| 0x817h<br>TX II                   | W   | FD7             | FD6     | FD5            | FD4    | FD3    | FD2     | FD1     | FD0     |
| 0x818h<br>Delay I                 | W   | DPR2            | DPR1    | DPR0           | TDL1   | TDL0   | PDL2    | PDL1    | PDL0    |
| 0x819h<br>Delay II                | W   | WSEL2           | WSEL1   | WSEL0          | AGC_D1 | AGC_D0 | RS_DLY2 | RS_DLY1 | RS_DLY0 |
| 0x81Ah<br>RX                      | W   | MSCRC           | RXSM1   | RXSM0          | AFC    | RXDI   | DMG     | BWS     | ULS     |
| 0x81Bh                            | W   | AGCE            | MIC     | IGC1           | IGC0   | MGC1   | MGC0    | LGC1    | LGC0    |
| RX Gain I                         | R   | ADC8            | MICR    | IGCR1          | IGCR0  | MGCR1  | MGCR0   | LGCR1   | LGCR0   |
| 0x81Ch                            | W   | PKIS1           | PKIS0   | PKT1           | PKT0   | DCH1   | DCH0    | RSAGC1  | RSAGC0  |
| RX Gain II                        | R   |                 |         |                |        |        |         | VTB1    | VTB0    |
| 0x81Dh                            | W   | IFPK            | VRSEL   | MS             | MSCL4  | MSCL3  | MSCL2   | MSCL1   | MSCL0   |
| RX Gain III                       | R   | RH7             | RH6     | RH5            | RH4    | RH3    | RH2     | RH1     | RH0     |
|                                   |     |                 |         | <del>IWC</del> |        |        |         |         | IFAS    |
| 0x81Eh<br>RX Gain IV              | W   | MXD<br>RL7      | CSS     | HPLS           | MHC1   | MHC0   | LHC1    | LHC0    | XADSP   |
|                                   | R   |                 | RL6     | RL5            | RL4    | RL3    | RL2     | RL1     | RL0     |
| 0x81Fh                            | W   | RTH7            | RTH6    | RTH5           | RTH4   | RTH3   | RTH2    | RTH1    | RTH0    |
| RSSI Threshold                    | R   | ADC7            | ADC6    | ADC5           | ADC4   | ADC3   | ADC2    | ADC1    | ADC0    |
| 0x820h<br>ADC                     | W   | RSM1            | RSM0    | ERSS           | FSARS  | SYNCS  | XADS    | RSS     | CDM     |
| 0x821h<br>Code I                  | W   | XDS             | MCS     | WHTS           | FECS   | CRCS   | PML2    | PML1    | PML0    |
| 0x822h<br>Code II                 | W   | DCL2            | DCL1    | DCL0           | ETH2   | ETH1   | ETH0    | PMD1    | PMD0    |
| 0x8 <mark>23</mark> h<br>Code III | W   | IDL             | WS6     | WS5            | WS4    | WS3    | WS2     | WS1     | WS0     |
| 0x824h                            | W   | RNUM0_2         | RNUM0_1 | RNUM0_0        | MFBS   | MFB3   | MFB2    | MFB1    | MFB0    |
| IF Calibration I                  | R   | -               | -       | -              | FBCF   | FB3    | FB2     | FB1     | FB0     |
| 0x825h                            | W   | PWORS           | TRT2    | TRT1           | TRT0   | MRCKS  | RNUM1_2 | RNUM1_1 | RNUM1_0 |
| IF Calibration II                 | R   | -               | -       |                | FCD4   | FCD3   | FCD2    | FCD1    | FCD0    |
| 0x826h                            | W   | <del>VCSW</del> | PKS     | VCCS           | MVCS   | VCOC3  | VCOC2   | VCOC1   | VCOC0   |
| VCO current<br>Calibration        | R   | -               | -       | -              | FVCC   | VCB3   | VCB2    | VCB1    | VCB0    |
| 0x827h                            | W   | DCD1            | DCD0    | DAGS           | PDV    | MVBS   | MVB2    | MVB1    | MVB0    |
| VCO band                          | R   | -               | -       | 1              |        | VBCF   | VB2     | VB1     | VB0     |



0x80Ch CKO Pin

0x80Dh

ECKOE

W

CKOS3



| 0x828h                             |   |                |           |           |           | 1         |           | 1               |                 |
|------------------------------------|---|----------------|-----------|-----------|-----------|-----------|-----------|-----------------|-----------------|
| VCO band                           | w | DAMV1          | DAMV0     | VTH2      | VTH1      | VTH0      | VTL2      | VTL1            | VTL0            |
| Calibration II                     |   |                | -         |           |           |           |           |                 |                 |
| 0x829h                             | W | RGS            | RGV1      | RGV0      | PACTL     | BVT2      | BVT1      | BVT0            | BDS             |
| Battery detect                     | R | RGS            | RGV1      | RGV0      | BDF       | BVT2      | BVT1      | BVT0            | BDS             |
| 0x82Ah<br>TX test                  | W | IFBC1          | IFBC0     | TXCS      | PAC1      | PAC0      | TBG2      | TBG1            | TBG0            |
| 0x82Bh<br>Rx DEM test I            | W | DMT            | DCM1      | DCM0      | MLP1      | MLP0      | SLF2      | SLF1            | SLF0            |
| 0x82Ch<br>Rx DEM test II           | W | DCV7           | DCV6      | DCV5      | DCV4      | DCV3      | DCV2      | DCV1            | DCV0            |
| 0x82Dh<br>Charge Pump<br>Current I | W | CPM3           | CPM2      | CPM1      | CPM0      | CPT3      | CPT2      | CPT1            | СРТ0            |
| 0x82Eh<br>Crystal test             | W | PRS            | QDS       | QCLIM     | DBD       | XCC1      | XCC0      | XCP1            | XCP0            |
| 0x82Fh<br>PLL test                 | W | MDEN           | PMPE      | PRIC1     | PRIC0     | PRRC1     | PRRC0     | SDPW            | NSDO            |
| 0x830h<br>VCO test I               | W | DEVGD2         | DEVGD1    | DEVGD0    | TLB1      | TLB0      | RLB1      | RLB0            | <del>VCBS</del> |
| 0x831h<br>VCO test II              | W | CHD3           | CHD2      | CHD1      | CHD0      | RFT3      | RFT2      | RFT1            | RFT0            |
| 0x832h<br>IFAT                     | W | MPDT5          | MPDT4     | MPDT3     | MPDT2     | MPDT1     | MPDT0     | <del>IFBC</del> | LIMC            |
| 0x833h<br>RF test I                | W | ASMV2          | ASMV1     | ASMV0     | SDMS      | OLM       | CPCS      | СРН             | CPS             |
| 0x834h                             | W |                | CRS3      | CRS2      | CRS1      | CRS0      | SRS2      | SRS1            | SRS0            |
| RF test II                         | R |                | CRSR3     | CRSR2     | CRSR1     | CRSR0     | SRSR2     | SRSR1           | SRSR0           |
| 0,0256                             | W | <del>STS</del> | STMP      | STM5      | STM4      | STM3      | STM2      | STM1            | STM0            |
| 0x835h<br>RF test III              | R | -              | -         | STMR5     | STMR4     | STMR3     | STMR2     | STMR1           | STMR0           |
| 0x836h                             | W | CGC            | DVI1      | DVI0      | FBG4      | FBG3      | FBG2      | FBG1            | FBG0            |
| RF test IV                         | R |                |           |           | FBGR4     | FBGR3     | FBGR2     | FBGR1           | FBGR0           |
| 0x837h                             | W | FGC1           | FGC0      | CTR5      | CTR4      | CTR3      | CTR2      | CTR1            | CTR0            |
| RF test V                          | R | FGCR1          | FGCR0     | CTRR5     | CTRR4     | CTRR3     | CTRR2     | CTRR1           | CTRR0           |
| 0x838h<br>Channel Index            | W |                | BLE       |           |           | CHID      | X[5:0]    |                 |                 |
| 0x839h<br>CRC1                     | w | CRCINIT23      | CRCINIT22 | CRCINIT21 | CRCINIT20 | CRCINIT19 | CRCINIT18 | CRCINIT17       | CRCINIT16       |
| 0x83Ah<br>CRC2                     | W | CRCINIT15      | CRCINIT14 | CRCINIT13 | CRCINIT12 | CRCINIT11 | CRCINIT10 | CRCINIT9        | CRCINIT8        |
| 0x83Bh<br>CRC3                     | w | CRCINIT7       | CRCINIT6  | CRCINIT5  | CRCINIT4  | CRCINIT3  | CRCINIT2  | CRCINIT1        | CRCINIT0        |
| 0x <mark>83Ch</mark><br>CRC4       | W | CRCINR23       | CRCINR22  | CRCINR21  | CRCINR20  | CRCINR19  | CRCINR18  | CRCINR17        | CRCINR16        |
| 0x83 <mark>D</mark> h<br>CRC5      | W | CRCINR15       | CRCINR14  | CRCINR13  | CRCINR12  | CRCINR11  | CRCINR10  | CRCINR9         | CRCINR8         |
| 0x83Eh<br>CRC6                     | W | CRCINR7        | CRCINIR6  | CRCINIR5  | CRCINIR4  | CRCINIR3  | CRCINIR2  | CRCINIR1        | CRCINIR0        |
| 0x83Fh                             | W | MDAG7          | MDAG6     | MDAG5     | MDAG4     | MDAG3     | MDAG2     | MDAG1           | MDAG0           |
| VCO band<br>Calibration III        | R | ADAG7          | ADAG6     | ADAG5     | ADAG4     | ADAG3     | ADAG2     | ADAG1           | ADAG0           |
| 0x840h<br>VCO deviation            | W | DEVS3          | DEVS2     | DEVS1     | DEVS0     | DAMR_M    | VMTE_M    | VMS_M           | MSEL            |
| Calibration I                      | R | DEVA7          | DEVA6     | DEVA5     | DEVA4     | DEVA3     | DEVA2     | DEVA1           | DEVA0           |
| 0x841h                             | W | MVDS           | MDEV6     | MDEV5     | MDEV4     | MDEV3     | MDEV2     | MDEV1           | MDEV0           |



| VCO deviation                              |        |               |               |          |          |             |             |                 | ]            |
|--------------------------------------------|--------|---------------|---------------|----------|----------|-------------|-------------|-----------------|--------------|
| Calibration II                             | R      | ADEV7         | ADEV6         | ADEV5    | ADEV4    | ADEV3       | ADEV2       | ADEV1           | ADEV0        |
| 0x842h<br>VCO deviation<br>Calibration III | W/R    | VMG7          | VMG6          | VMG5     | VMG4     | VMG3        | VMG2        | VMG1            | VMG0         |
| 0x843h<br>ADC Control                      | W      | AVSEL1        | AVSEL0        | MVSEL1   | MVSEL0   | RADC        | FPS2        | FPS1            | FPS0         |
| 0x844h<br>WOT                              | W      | RCTS          | SPSS          | WMODE    | WN1      | WN0         | RCOT2       | RCOT1           | RCOT0        |
| 0x845h<br>Channel Group I                  | R/W    | CHGL7         | CHGL6         | CHGL5    | CHGL4    | CHGL3       | CHGL2       | CHGL1           | CHGL0        |
| 0x846h<br>Channel Group II                 | R/W    | CHGH7         | CHGH6         | CHGH5    | CHGH4    | CHGH3       | CHGH2       | CHGH1           | CHGH0        |
| 0x847h<br>Charge Pump<br>Current II        | W      | СРТХЗ         | CPTX2         | CPTX1    | CPTX0    | CPRX3       | CPRX2       | CPRX1           | CPRX0        |
| 0x848h<br>VCO<br>modulation Delay          | W      |               | INTPRC        | DEVFD2   | DEVFD1   | DEVFD0      | DEVD2       | DEVD1           | DEVD0        |
| 0x849h<br>INTC                             | W      | VRPL1         | VRPL0         | VCOSC5   | VCOSC4   | VCOSC3      | VCOSC2      | VCOSC1          | VCOSC0       |
| 0x84Ah<br>DET                              | W      |               |               | PREDN2   | PREDN1   | PREDN0      | PREUP2      | PREUP1          | PREUP0       |
| 0x84B<br>ID0                               | W/R    | ID31          | ID30          | ID29     | ID28     | ID27        | ID26        | ID25            | ID24         |
| 0x84C<br>ID1                               | W/R    | ID23          | ID22          | ID21     | ID20     | ID19        | ID18        | ID17            | ID16         |
| 0x84D<br>ID2                               | W/R    | ID15          | ID14          | ID13     | ID12     | ID11        | ID10        | ID9             | ID8          |
| 0x84E<br>ID3                               | W/R    | ID7           | ID6           | ID5      | ID4      | ID3         | ID2         | ID1             | ID0          |
| 0x84F<br>DID0                              | R      | DID31         | DID30         | DID29    | DID28    | DID27       | DID26       | DID25           | DID24        |
| 0x850<br>DID1                              | R      | DID23         | DID22         | DID21    | DID20    | DID19       | DID18       | DID17           | DID16        |
| 0x851<br>DID2                              | R      | DID15         | DID14         | DID13    | DID12    | DID11       | DID10       | DID9            | DID8         |
| 0x852<br>DID3                              | R      | DID7          | DID6          | DID5     | DID4     | DID3        | DID2        | DID1            | DID0         |
| 0x853<br>EXT1                              | W/R    |               | XEC           | BREV     | BGS      | LIMB        | ADCCS       | BOD             | REGR         |
| 0x854<br>EXT2                              | W      | VTRB3         | VTRB2         | VTRB1    | VTRB0    | VMRB3       | VMRB2       | VMRB1           | VMRB0        |
| 0x855<br>EXT3                              | W      | EXT3_7        | EXT3_6        | EXT3_5   | EXT3_4   | EXT3_3      | EXT3_2      | VCS             | VCSW         |
| 0x856<br>EXT4                              | W      | EXT4_7        | EXT4_6        | EXT4_5   | EXT4_4   | EXT4_3      | EXT4_2      | EXT4_1          | EXT4_0       |
| 0x857                                      | W      | BUFS          | CKS1          | CKS0     | MODE     | MVS[2]      | MVS[1]      | MVS[0]          | ADCE         |
| ADCCTL<br>0x858                            | R      |               |               |          | MODE     | MVS[2]      | MVS[1]      | MVS[0]          | ADCE<br>DTMP |
| ADCAVG1                                    | W<br>R | <br>MVADC[11] | <br>MVADC[10] | MVADC[9] | MVADC[8] | <br>ADC[11] | <br>ADC[10] | ENADC<br>ADC[9] | ADC[8]       |
| 0x859<br>ADCAVG2                           | R      | MVADC[7]      | MVADC[6]      | MVADC[5] | MVADC[4] | MVADC[3]    | MVADC[2]    | MVADC[1]        | MVADC[0]     |
| 0x860<br>ADCAVG3                           | R      | ADC[7]        | ADC[6]        | ADC[5]   | ADC[4]   | ADC[3]      | ADC[2]      | ADC[1]          | ADC[0]       |
|                                            | mont   |               |               |          |          |             |             |                 |              |

Legend: - = unimplemented



# 9.2.1 Mode Register (Address: 0x800h)

| Name  | R/W | Bit 7  | Bit 6 | Bit 5 | Bit 4   | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|--------|-------|-------|---------|-------|-------|-------|-------|
| Mode  | W   | RESETN | FWPRN | FRPRN | ADC12RN |       | BFCRN |       |       |
| Woue  | R   | -      | FECF  | CRCF  | CER     | XER   | PLLER | TRSR  | TRER  |
| Reset |     |        |       |       |         |       |       |       |       |

RESETN: Write to this register by 0x00 to issue reset command, then it is auto clear FWPRN: FIFO Write Point Software Reset. FRPRN: FIFO Read Point Software Reset. ADC12RN: ADC-12b Software Reset. BFCRN: IF Filter Bank Calibration Software Reset.

FECF: FEC flag. [0]: FEC pass. [1]: FEC error.

CRCF: CRC flag. [0]: CRC pass. [1]: CRC error.

# CER: RF chip enable status.

**[0]:** RF chip is disabled. **[1]:** RF chip is enabled.

## XER: Internal crystal oscillator enabled status.

[0]: Crystal oscillator is disabled. [1]: Crystal oscillator is enabled.

# PLLE: PLL enabled status.

[0]: PLL is disabled. [1]: PLL is enabled.

#### **TRER: TRX state enabled status. [0]:** TRX is disabled. **[1]:** TRX is enabled.

# TRSR: TRX Status Register.

[0]: RX state. [1]: TX state. Serviceable if TRER=1 (TRX is enable).

# 9.2.2 Mode Control Register 1 (Address: 0x801h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| MODEC1 | W   | STRB7 | STRB6 | STRB5 | STRB4 | STRB3 | STRB2 | STRB1 | STRB0 |
| Reset  |     | 1     | 0     | 1     | 0     | 0     | 0     | 0     | 0     |

# STRB[7:0]: Strobe command register.

0x80: Sleep mode. 0x90: Idle mode. 0xA0: Standby mode. 0xB0: PLL mode. 0xC0: TX mode. 0xD0: RX mode.

# 9.2.2 Mode Control Register 2 (Address: 0x802h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| MODEC2 | W   | DDPC  | ARSSI | AIF   | DFCD  | WWSE  | FMT   | FMS   | ADCM  |
|        | R   | DDPC  | ARSSI | AIF   | CD    | WWSE  | FMT   | FMS   | ADCM  |
| Reset  |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

DDPC (Direct mode data pin control): Direct mode modem data can be accessed via SDIO pin when this register is enabled.

[0]: Disable. [1]: Enable.

ARSSI: Auto RSSI measurement while entering RX mode.



## [0]: Disable. [1]: Enable.

AIF (Auto IF Offset): RF LO frequency will auto offset one IF frequency while entering RX mode. [0]: Disable. [1]: Enable.

#### CD / DFCD:

**DFCD (Data Filter by CD):** The received package will be filtered out if Carrier Detector signal is inactive. **[0]:** Disable. **[1]:** Enable.

#### **CD (Read):** Carrier detector signal.

[0]: Input power below threshold. [1]: Input power above threshold.

#### WWSE: Reserved for internal usage only. Shall be set to [0].

#### FMT: Reserved for internal usage only. Shall be set to [0].

#### FMS: Direct/FIFO mode select.

[0]: Direct mode. [1]: FIFO mode.

#### ADCM: ADC measurement enable (Auto clear when done).

[0]: Disable measurement or measurement finished. [1]: Enable measurement.

| [0]         Disable ADC         Disable ADC           [1]         Measure temperature, external Analog Digital         Measure RSSI, carrier detect | ADCM | A7107 @ Standby mode                                    | A7107 @ RX mode              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------|------------------------------|
|                                                                                                                                                     | [0]  | Disable ADC                                             | Disable ADC                  |
| Convert                                                                                                                                             |      | Measure temperature, external Analog Digital<br>Convert | Measure RSSI, carrier detect |

Refer to chapter 17 for details.

# 9.2.3 Calibration Control Register (Address: 0x803h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| CALC  | R/W | -     |       | -     | RSSC  | VDC   | VCC   | VBC   | FBC   |
| Reset |     |       |       |       | 0     | 0     | 0     | 0     | 0     |

RSSC: RSSI calibration enable (Auto clear when done). [0]: Disable. [1]: Enable.

VCC: VCO Current calibration enable (Auto clear when done). [0]: Disable. [1]: Enable.

VBC: VCO Bank calibration enable (Auto clear when done). [0]: Disable. [1]: Enable.

VDC: VCO Deviation calibration enable (Auto clear when done). [0]: Disable. [1]: Enable.

FBC: IF Filter Bank calibration enable (Auto clear when done). [0]: Disable. [1]: Enable.

# 9.2.4 FIFO Register I (Address: 0x804h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| FIFO I | W   | FEP7  | FEP6  | FEP5  | FEP4  | FEP3  | FEP2  | FEP1  | FEP0  |
| Reset  |     | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |

FEP [7:0]: FIFO End Pointer for TX FIFO and Rx FIFO.

Refer to chapter 16 for details.

#### 9.2.5 FIFO Register II (Address: 0x805h)

| Name    | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| FIFO II | W   | FPM1  | FPM0  | PSA5  | PSA4  | PSA3  | PSA2  | PSA1  | PSA0  |
| Reset   |     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     |



## FPM [1:0]: FIFO Pointer Margin

# PSA [5:0]: Used for Segment FIFO.

Refer to chapter 16 for details.

## 9.2.8 RC OSC Register I (Address: 0x806h)

| Name  | R/W | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |  |  |  |
|-------|-----|---------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
|       | W   | WWS_SL7 | WWS_SL6 | WWS_SL5 | WWS_SL4 | WWS_SL3 | WWS_SL2 | WWS_SL1 | WWS_SL0 |  |  |  |
| Reset |     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |  |

Refer to chapter 18 for details.

# 9.2.9 RC OSC Register II (Address: 0x807h)

| Name      | R/W | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|-----------|-----|---------|---------|---------|---------|---------|---------|---------|---------|
| RC OSC II | W   | WWS_SL9 | WWS_SL8 | WWS_AC5 | WWS_AC4 | WWS_AC3 | WWS_AC2 | WWS_AC1 | WWS_AC0 |
| Reset     |     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

# WWS\_AC [5:0]: 6-bits WWS\_AC Timer for TWWS Function (244us ~ 15.6ms).

## WWS\_SL [9:0]: 10-bits WWS\_SL Timer for TWWS Function (7.8ms ~ 7.99s).

WWS\_SL [9:0] are from address (07h) and (08h),

Refer to chapter 18 for details

# 9.2.10 RC OSC Register III (Address: 0x808h)

| Name       | R/W | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit 1 | Bit 0  |
|------------|-----|--------|--------|-------|-------|-------|---------|-------|--------|
| RC OSC III | W   | BBCKS1 | BBCKS0 |       |       |       | RCOSC_E | TSEL  | TWWS_E |
| Reset      |     | 0      | 0      | 0     | 0     | 0     | 1       | 0     | 1      |

# BBCKS [1:0]: Clock select for internal digital block

[00]: F<sub>SYCK</sub> / 8. [01]: F<sub>SYCK</sub> / 16. [10]: F<sub>SYCK</sub> / 32. [11]: F<sub>SYCK</sub> / 64. F<sub>SYCK</sub> is A7105's System clock. Refer to chapter 18 for details

RCOSC\_E: RC-oscillator enable. [0]: Disable. [1]: Enable.

**TSEL: Timer select for TWWS function.** [0]: Use WWS\_AC. [1]: Use WWS\_SL.

TWWS\_E: Enable TWWS function. [0]: Disable. [1]: Enable.

# 9.2.10 RC OSC Register IV (Address: 0x809h)

| Name      | R/W | Bit 7   | Bit 6   | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----|---------|---------|--------|--------|-------|-------|-------|-------|
| RC OSC IV | W   |         |         |        | WSEL1  | WSEL0 | MVS1  | MVS0  | ENCAL |
|           | R   | NUMLH11 | NUMLH10 | NUMLH9 | NUMLH8 |       | RCOC9 | RCOC8 | ENCAL |
| Reset     |     | 0       | 0       | 0      | 0      | 0     | 1     | 0     | 1     |

WSEL [1:0]: Clock select for internal RC oscillator Calibration

ENCAL: WOR calibration enable. [1]: enable.

RCOC [9:0]: WOR Calibration value.



# 9.2.10 RC OSC Register V (Address: 0x80Ah)

| Name     | R/W | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|----------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| RC OSC V | W   | MRCT9  | MRCT8  |        |        |        |        | MAN    | MCALS  |
|          | R   | NUMLH7 | NUMLH6 | NUMLH5 | NUMLH4 | NUMLH3 | NUMLH2 | NUMLH1 | NUMLH0 |
| Reset    |     | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 1      |

MRCT [9:0]: Manual setting for WOR Calibration value.

MAN: WOR calibration manual setting select. [1]: Manual.

MCALS: WOR ENCAL reset setting. [0]:reset when CALOK. [1]:spi reset.

## 9.2.10 RC OSC Register VI (Address: 0x80Bh)

| Name      | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RC OSC VI | W   | MRCT7 | MRCT6 | MRCT5 | MRCT4 | MRCT3 | MRCT2 | MRCT1 | MRCT0 |
|           | R   | RCOC7 | RCOC6 | RCOC5 | RCOC4 | RCOC3 | RCOC2 | RCOC1 | RCOC0 |
| Reset     |     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 1     |

## MRCT [9:0]: Manual setting for WOR Calibration value.

RCOC [9:0]: WOR Calibration value.

# 9.2.11 CKO Pin Control Register (Address: 0x80Ch)

| Name            | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| CKO Pin Control | W   | ECKOE | CKOS3 | CKOS2 | CKOS1 | CKOS0 | CKOI  | CKOE  |       |
| Reset           |     | 1     | 0     | 1     | 1     | 1     | 0     | 1     | 0     |

# ECKOE: External Clock Output Enable for CKOS [3:0]= [0100] ~ [0111].

[0]: Disable. [1]: Enable.

# CKOS [3:0]: CKO pin output select.

CKOI: CKO pin output signal invert. [0]: Non-inverted output. [1]: Inverted output.

# CKOE: CKO pin Output Enable.

[0]: High Z. [1]: Enable.

# 9.2.12 GIO1 Pin Control Register I (Address: 0x80Dh)

| Name               | R/W | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0  |
|--------------------|-----|-------|-------|--------|--------|--------|--------|-------|--------|
| GIO1 Pin Control I | W   | VGC1  | VGC0  | GIO1S3 | GIO1S2 | GIO1S1 | GIO1S0 | GIO1I | GIO10E |
| Reset              |     |       |       | 0      | 0      | 0      | 0      | 0     | 1      |

# GIO1S [3:0]: GIO1 pin function select.

| GIO1S [3:0] | TX state           | RX state          |
|-------------|--------------------|-------------------|
| [0000]      | WTR (Wait until T) | X or RX finished) |



| [0001] | EOAC (end of access code) FSYNC (frame sync) |
|--------|----------------------------------------------|
| [0010] | TMEOorTMDEO (TX CD (carrier detect)          |
|        | modulation enable)                           |
| [0011] | Preamble Detect Output (PMDO)                |
| [0100] | MCU wakeup signal (TWWS)                     |
| [0101] | In phase demodulator input (DMII)            |
| [0110] | SDO ( 4 wires SPI data out)                  |
| [0111] | TRXD In/Out (Direct mode)                    |
| [1000] | RXD (Direct mode)                            |
| [1001] | TXD (Direct mode)                            |
| [1010] | In phase demodulator external input (EXDI0)  |
| [1011] | External FSYNC input in RX direct mode       |
| [1100] | INC                                          |
| [1101] | PDN_RX                                       |
| [1110] | CSOK                                         |
| [1111] | Reserved                                     |

#### GIO1I: GIO1 pin output signal invert. [0]: Non-inverted output. [1]: Inverted output.

GIO1OE: GIO1pin output enable.

[0]: High Z. [1]: Enable.

# 9.2.13 GIO2 Pin Control Register II (Address: 0x80Eh)

| Name                | R/W | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0  |
|---------------------|-----|-------|-------|--------|--------|--------|--------|-------|--------|
| GIO2 Pin Control II | W   | HBW   |       | GIO2S3 | GIO2S2 | GIO2S1 | GIO2S0 | GIO2I | GIO2OE |
| Reset               |     |       |       | 0      | 1      | 0      | 0      | 0     | 1      |

# GIO2S [3:0]: GIO2 pin function select.

| GIO2S  | TX state                        | RX state               |
|--------|---------------------------------|------------------------|
|        |                                 |                        |
| [0000] | WTR (Wait until TX or RX finish | ed)                    |
| [0001] | EOAC (end of access code)       | FSYNC (frame sync)     |
| [0010] | TMEO or TMDEO(TX                | CD (carrier detect)    |
|        | modulation enable)              |                        |
| [0011] | Preamble Detect Output (PMDC    |                        |
| [0100] | MCU wakeup signal (TWWS)        |                        |
| [0101] | Quadrature phase demodulator    | input (DMIQ)           |
| [0110] | SDO (4 wires SPI data out)      |                        |
| [0111] | TRXD In/Out (Direct mode)       |                        |
| [1000] | RXD (Direct mode)               |                        |
| [1001] | TXD (Direct mode)               |                        |
| [1010] | Quadrature phase demodulator    | external input (EXDI1) |
| [1011] | External FSYNC input in RX dire | ect mode               |
| [1100] | DEC                             |                        |
| [1101] | PDN_TX                          |                        |
| [1110] | CSOK                            |                        |
| [1111] | Reserved                        |                        |

# GIO2I: GIO2 pin output signal invert.

[0]: Non-inverted output. [1]: Inverted output.

### GIO2OE: GIO2 pin Output Enable. [0]: High Z. [1]: Enable.

# 9.2.14 Clock Register (Address: 0x80Fh)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Clock | R/W | GRC3  | GRC2  | GRC1  | GRC0  | CSC1  | CSC0  | CGS   | XS    |
| Reset |     | 1     | 1     | 1     | 1     | θ     | 1     | 0     | 1     |



#### GRC [3:0]: Clock generation reference counter.

#### Due to A7105 supports different external crystals,

#### GRC is used to get 2 MHz Clock Generator Reference (FCGR) for internal usage.

Clock generation reference =  $F_{CSCK}$  / (GRC+1). Maximum divide ratio is 16.

FCSCK is A7105's master clock. Refer to chapter 18 for details

## CSC [1:0]: system clock F<sub>SYCK</sub> divider select.

**[00]:** F<sub>CSCK</sub> / 1. **[01]:** F<sub>CSCK</sub> / 2.

#### CGS: Clock generator enable.

[0]: Disable. [1]: Enable. CGS shall be set to [1].

#### XS: Crystal oscillator select.

[0]: Use external clock. [1]: Use external crystal.

| Master clock frequency | CGS = 0             | CGS = 1 |  |
|------------------------|---------------------|---------|--|
| DBL = 0                | Crystal frequency   | 32 MHz  |  |
| DBL = 1                | 2*crystal frequency | 32 MHz  |  |

Refer to chapter 18 for details

## 9.2.15 Data Rate Register (Address: 0x810h)

| Name      | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Data Rate | R/W | SDR7  | SDR6  | SDR5  | SDR4  | SDR3  | SDR2  | SDR1  | SDR0  |
| Reset     |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### SDR [7:0]: Data rate division selection.

Data rate =  $\mathbf{F}_{SYCK}$  / (32\*(SDR [7:0]+1)). Refer to chapter 13 for details.

## 9.2.16 PLL Register I (Address: 0x811h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| PLL I | R/W | CHN7  | CHN6  | CHN5  | CHN4  | CHN3  | CHN2  | CHN1  | CHN0  |
| Reset |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### CHN [7:0]: LO channel number select.

Refer to chapter 14 for details.

# 9.2.17 PLL Register II (Address: 0x812h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| PLL II | R   | DBL   | RRC1  | RRC0  | CHR3  | CHR2  | CHR1  | CHR0  | IP8   |
|        | W   | DBL   | RRC1  | RRC0  | CHR3  | CHR2  | CHR1  | CHR0  | BIP8  |
| Reset  |     | 1     | 0     | 0     | 1     | 1     | 1     | 1     | 0     |

#### DBL: Crystal frequency doubler selection.

[0]: Disable.  $F_{XREF} = F_{XTAL}$ . [1]: Enable.  $F_{XREF} = 2 * F_{XTAL}$ .

## RRC [1:0]: RF PLL reference counter setting.

## CHR [3:0]: PLL channel step setting.

Refer to chapter 14 for details.

#### 9.2.18 PLL Register III (Address: 0x813h)

| Name    | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| PLL III | R   | IP7   | IP6   | IP5   | IP4   | IP3   | IP2   | IP1   | IP0   |
|         | W   | BIP7  | BIP6  | BIP5  | BIP4  | BIP3  | BIP2  | BIP1  | BIP0  |
| Reset   |     | 0     | 1     | 0     | 0     | 1     | 0     | 1     | 1     |



# BIP [8:0]: LO base frequency integer part setting.

BIP [8:0] are from address (0Fh) and (10h),

## IP [8:0]: LO frequency integer part value.

IP [8:0] are from address (0Fh) and (10h),

Refer to chapter 14 for details.

# 9.2.19 PLL Register IV (Address: 0x814h)

| Name   | R/W | Bit 7 | Bit 6     | Bit 5     | Bit 4    | Bit 3      | Bit 2     | Bit 1   | Bit 0   |
|--------|-----|-------|-----------|-----------|----------|------------|-----------|---------|---------|
| PLL IV | R   | /FP15 | AC14/FP14 | AC13/FP13 | AC12/P12 | AC11/ FP11 | AC10/FP10 | AC9/FP9 | AC8/FP8 |
|        | W   | BFP15 | BFP14     | BFP13     | BFP12    | BFP11      | BFP10     | BFP9    | BFP8    |
| Reset  |     | 0     | 0         | 0         | 0        | 0          | 0         | 0       | 0       |

# 9.2.20 PLL Register V (Address: 0x815h)

| Name  | R/W | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|-------|-----|---------|---------|---------|---------|---------|---------|---------|---------|
| PLL V | R   | AC7/FP7 | AC6/FP6 | AC5/FP5 | AC4/FP4 | AC3/FP3 | AC2/FP2 | AC1/FP1 | AC0/FP0 |
| FLL V | W   | BFP7    | BFP6    | BFP5    | BFP4    | BFP3    | BFP2    | BFP1    | BFP0    |
| Reset |     | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       |

# BFP [15:0]: LO base frequency fractional part setting.

BFP [15:0] are from address (11h) and (12h),

# AC [14:0] (Read): Auto Frequency compensation value (if AFC (18h) =1).

# FP [15:0] (Read): LO frequency fractional part setting.

Refer to chapter 14 for details.

# 9.2.21 TX Register I (Address: 0x816h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| TX I  | W   | GDR   | TMDE  | TXDI  | TME   | FS    | FDP2  | FDP1  | FDP0  |
| Reset |     | 0     | 1     | 0     | 1     | 0     | 1     | 1     | 0     |

# GDR: Gaussian Filter Over Sampling Rate Select.

[0]: BT= 1 [1]: BT= 0.5

 TMDE: TX Modulation Enable for VCO Modulation.
 [0]: Disable.
 [1]: Enable.

TXDI: TX data invert. Recommend TXDI = [0]. [0]: Non-invert. [1]: Invert.

TME: TX modulation enable. [0]: Disable. [1]: Enable. FS: Filter select. The filter shape is gaussian filter (BT=0.7). [0]: disable. [1]: enable.

FDP [2:0]: Frequency deviation power setting. Refer to control register (15h).

# 9.2.22 TX Register II (Address: 0x817h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| TX II | W   | FD7   | FD6   | FD5   | FD4   | FD3   | FD2   | FD1   | FD0   |
| Reset |     | 0     | 0     | 1     | 0     | 1     | 1     | 1     | 1     |



# FD [7:0]: Frequency deviation setting.

 $F_{DEV} = F_{PFD} / 2^{**} 16^* FD^* 2^{**} (FDP-1).$   $Where F_{PFD} = F_{XTAL} * (DBL+1) / (RRC [1:0]+1), PLL comparison frequency.$ 

# 9.2.23 Delay Register I (Address: 0x818h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Delay | W   | DPR2  | DPR1  | DPR0  | TDL1  | TDL0  | PDL2  | PDL1  | PDL0  |
| Reset |     | 0     | 0     | 0     | 1     | 0     | 0     | 1 🔹   | 0     |

DPR [2:0]: Delay scaling setting. Recommend DPR = [000].

**TDL** [1:0]: Delay for TX settling. Delay= 20 \* (TDL [1:0]+1)\*(DPR [2:0]+1) us. **PDL** [2:0]: Delay for TX settling. Delay= 20 \* (PDL [2:0]+1)\*(DPR [2:0]+1) us.

# 9.2.24 Delay Register II (Address: 0x819h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   |
|-------|-----|-------|-------|-------|---------|---------|---------|---------|---------|
| Delay | W   | WSEL2 | WSEL1 | WSEL0 | RSSC_D1 | RSSC_D0 | RS_DLY2 | RS_DLY1 | RS_DLY0 |
| Reset |     | 0     | 1     | 0     | 0       | 0       | 0       | 0       | 1       |

## WSEL [2:0]: XTAL settling delay setting (200us ~ 2.5ms). Recommend WSEL = [010].

[000]: 200us. [001]: 400us. [010]: 600us. [011]: 800us. [100]: 1ms. [101]: 1.5ms. [110]: 2ms. [111]: 2.5ms.

# RSSC\_D [1:0]: RSSI calibration switching time (10us ~ 40us). Recommend RSSC\_D = [00].

[00]: 10us. [01]: 20us. [10]: 30us. [11]: 40us.

# RS DLY [2:0]: RSSI measurement delay (10us ~ 80us), Recommend RS DLY = [001].

[000]: 10us. [001]: 20us. [010]: 30us. [011]: 40us. [100]: 50us. [101]: 60us. [110]: 70us. [111]: 80us.

# 9.2.25 RX Register (Address: 0x81Ah)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RX    | W   | MSCRC | RXSM1 | RXSM0 | AFC   | RXDI  | DMG   | BWS   | ULS   |
| Reset |     | 0     | 1     | 0     | 0     | 0     | 0     | 1     | 0     |

# MSCRC: Mask CRC (CRC Data Filtering Enable).

[0]: Disable. [1]: Enable.

RXSM0: Reserved for internal usage only. Shall be set to [1].

RXSM1: Reserved for internal usage only. Shall be set to [1].

AFC: Auto Frequency compensation select. [0]: Manual compensation. [1]: Auto compensation. Refer to section 14.4 for details.

RXDI: RX data output invert. Recommend RXDI = [0]. [0]: Non-inverted output. [1]: Inverted output.

DMG: Reserved for internal usage only. Shall be set to [0].

RAW: Reserved for internal usage only. Shall be set to [1].

# ULS: RX Up/Low side band select.

[0]: Up side band, [1]: Low side band. Refer to section 14.2 for details.



# 9.2.26 RX Gain Register I (Address: 0x81Bh)

| Name      | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RX Gain I | W   | AGCE  | MIC   | IGC1  | IGC0  | MGC1  | MGC0  | LGC1  | LGC0  |
| KA Gaill  | R   |       | MICR  | IGCR1 | IGCR0 | MGCR1 | MGCR0 | LGCR1 | LGCR0 |
| Reset     |     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

# AGCE: Auto Front end Gain Control Select. [0]: Disable. [1]: Enable.

IGC [1:0]: IFA Attenuation Select. [00]: 0dB. [01]: 6dB. [10]: 12dB. [11]: 18dB.

MGC [1:0]: Mixer Gain Attenuation select. [00]: 0dB. [01]: 6dB. [10]: 12dB. [11]: 18dB.

LGC [1:0]: LNA Gain Attenuation select. [00]: 6dB. [01]: 12dB. [10]: 18dB. [11]: 24dB.

## 9.2.27 RX Gain Register II (Address: 0x81Ch)

| Name       | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0  |
|------------|-----|-------|-------|-------|-------|-------|-------|--------|--------|
| RX Gain II | W   | PKIS1 | PKIS0 | PKT1  | PKT0  | DCH1  | DCH0  | RSAGC1 | RSAGC0 |
| KA Gain II |     |       |       |       |       |       |       | VT1    | VT0    |
| Reset      |     | 0     | 0     | 0     | 1     | 0     | 0     | 0      | 0      |

DCH[1:0]: AGC Hold setting. DCH[1]: [1]: No Hold.

DCH[0]: [1]: Hold by SYNC. [0]: Hold by Peamble OK.

VT[1:0]:

RH [7:0]: Reserved for internal usage only.

RSAGC [1:0]: AGC clock select.

[00]: (250Khz)IF/8. [01]: (500Khz)IF/4. [10]: (1Mhz)IF/2. [11]: 2Mhz(IF)

PKT[1:0]: VCO Peak Detect Current Select. Recommend PKT [1:0] = [01].

PKIS[1:0]: AGC Peak Detect Current Select. Recommend PKIS[1:0] = [00].

# 9.2.28 RX Gain Register III (Address: 0x81Bh)

| Name         | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RX Gain III  | R   | RH7   | RH6   | RH5   | RH4   | RH3   | RH2   | RH1   | RH0   |
| KA Gailt III | W   | IFPK  | VRSEL | MS    | MSCL4 | MSCL3 | MSCL2 | MSCL1 | MSCL0 |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

RH [7:0]: RSSI Calibration High Threshold.

MS: AGC Manual scale select.

[0]: RL-RH(Auto). [1]: MSCL(Manual).

MSCL[4:0]: AGC Manual Scale setting.

VRSEL: AGC Function select. [0]: RSSI AGC. [1]: normal AGC.

IFPK: AGC Amplifier Current Select. Recommend IFPK = [0].

## 9.2.29 RX Gain Register IV (Address: 0x81Ch)

|  | Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--|------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|--|------|-----|-------|-------|-------|-------|-------|-------|-------|-------|



A

| RX Gain III  | W | MXD | CSS | HPLS | MHC1 | MHC0 | LHC1 | LHC0 | XADSP |
|--------------|---|-----|-----|------|------|------|------|------|-------|
| TXX Gain III | R | RL7 | RL6 | RL5  | RL4  | RL3  | RL2  | RL1  | RL0   |
| Reset        |   | 0   | 0   | 0    | 0    | 1    | 1    | 1    | 0     |

CSS: RX demodulation carrier detect select. [1]: select.

RL [7:0]: RSSI Calibration Low Threshold.

MHC[1:0]: Reserved for internal usage only. Shall be set to [0].

LHC: Reserved for internal usage only. Shall be set to [01]. IWC: Reserved for internal usage only. Shall be set to [0]. MXD: Reserved for internal usage only. Shall be set to [0].

## 9.2.30 RSSI Threshold Register (Address: 0x81Fh)

| Name           | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RSSI Threshold | R   | ADC7  | ADC6  | ADC5  | ADC4  | ADC3  | ADC2  | ADC1  | ADC0  |
| KSSI Milesholu | W   | RTH7  | RTH6  | RTH5  | RTH4  | RTH3  | RTH2  | RTH1  | RTH0  |
| Reset          |     | 1     | 0     | 0     | 1     | 0     | 0     | 0     | 1     |

#### RTH [7:0]: Carrier detect threshold.

Refer to section 17.3 for details.

# ADC [7:0]: ADC output value of temperature, RSSI or external voltage measurement.

ADC input voltage= 0.3 + 1.2 \* ADC [7:0] / 256 V.

Refer to chapter 17 for details.

# 9.2.31 ADC Control Register (Address: 0x820h)

| Name        | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ADC Control | W   | RSM1  | RSM0  | ERSS  | FSARS | SYNCS | XADS  | RSS   | CDM   |
| Reset       |     | 0     | 1     | 0     | 1     | 0     | 0     | 1     | 1     |

# RSM [1:0]: RSSI margin = RTH – RTL. Recommend RSM = [11].

[00]: 5. [01]: 10. [10]: 15. [11]: 20.

Refer to section 17.3 for details.

ERSS: end enable for RSSI measurement

[0]: RSSI measurement continues until leave off RX mode.

[1]: RSSI measurement will end when carrier detected and ID code word received.

# FSARS: ADC clock select. Recommend FSARS = [0].

[0]: 4MHz. [1]: 8MHz.

# XADS: ADC input signal select.

[0]: Convert internal temperature or RSS signal. [1]: Convert external voltage,

# RSS: Temperature/RSSI measurement select.

[0]: Temperature measurement. [1]: RSSI or carrier-detect measurement.

#### CDM: RSSI measurement mode.

[0]: Single mode. [1]: Continuous mode.

# 9.2.32 Code Register I (Address: 0x821h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Code I | W   | XDS   | MCS   | WHTS  | FECS  | CRCS  | PML2  | PML1  | PML0  |
| Reset  |     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     |

XDS: VCO Modulation Data Sampling Clock selection. [0]: 8x over-sampling Clock. [1]: XCPCK Clock.

# WHTS: Data whitening (Data Encryption) select.

[0]: Disable. [1]: Enable.



FECS: FEC select. [0]: Disable. [1]: Enable.

CRCS: CRC select. [0]: Disable. [1]: Enable.

IDL: ID code length select. Recommend IDL= [1]. [0]: 2 bytes. [1]: 4 bytes.

PML [2:0]: Preamble length select. Recommend PML= [11]. [000]: 1 byte. [001]: 2 bytes. [010]: 3 bytes. [011]: 4 bytes. [100]: 5byts. [101]: 6bytes. [110]: 7bytes. [111]: 8bytes

Refer to chapter 16 for details.

# 9.2.33 Code Register II (Address: 0x822h)

| Name    | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Code II | W   | DCL2  | DCL1  | DCL0  | ETH2  | ETH1  | ETH0  | PMD1  | PMD0  |
| Reset   |     |       | 1     | 1     | 1     | 0     | 1     | 1     | 1     |

DCL [2:0]: Demodulator DC estimation average mode. Refer to DCM (2Eh) for details.

DCL [2]: payload average mode.

[0]: 128 bits average. [1]: 256 bits average.

DCL [1]: For average and hold mode.

[0]: 32 bits average. [1]: 64 bits average.

DCL [0]: Preamble detection delay. Count from preamble detected signal. Recommend DCL0 = [1]. [0]: 4 bits for DCL1=0, 8 bits for DCL1=1. [1]: 8 bits for DCL1=0, 16 bits for DCL1=1.

# ETH [2:0]: ID code error tolerance. Recommend ETH = [01].

[000]~[111]: 0~7 bit.

# PMD [1:0]: Preamble pattern detection length. Recommend PMD = [10].

[00]: Obit. [01]: 4bits. [10]: 8bits. [11]: 16bits.

Refer to chapter 16 for details.

# 9.2.34 Code Register III (Address: 0x823h)

| Name     | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Code III | W   | IDL   | WS6   | WS5   | WS4   | WS3   | WS2   | WS1   | WS0   |
| Reset    |     |       | 0     | 1     | 0     | 1     | 0     | 1     | 0     |

IDL: ID code length select. Recommend IDL= [1].

[0]: 2 bytes. [1]: 4 bytes.

WS [6:0]: Data Whitening seed setting (data encryption key).

Refer to chapter 16 for details.

# 9.2.35 IF Calibration Register I (Address: 0x824h)

| Name             | R/W | Bit 7   | Bit 6   | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------------|-----|---------|---------|---------|-------|-------|-------|-------|-------|
| IF Calibration I | R   |         |         |         | FBCF  | FB3   | FB2   | FB1   | FB0   |
|                  | W   | RNUM0_2 | RNUM0_1 | RNUM0_0 | MFBS  | MFB3  | MFB2  | MFB1  | MFB0  |
| Reset            |     |         |         |         | 0     | 0     | 1     | 1     | 0     |

MFBS: IF filter calibration value select. Recommend MFBS = [0]. [0]: Auto calibration value. [1]: Manual calibration value.

MFB [3:0]: IF filter manual calibration value.



N

FBCF: IF filter auto calibration flag. [0]: Pass. [1]: Fail.

#### FB [3:0]: IF filter calibration value.

MFBS= 0: Auto calibration value (AFB), MFBS= 1: Manual calibration value (MFB).

#### RNUM0[2:0]: sync word clock recovery manual setting.

Refer to chapter 15 for details.

# 9.2.36 IF Calibration Register II (Address: 0x825h)

| Name              | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit 1   | Bit 0   |
|-------------------|-----|-------|-------|-------|-------|-------|---------|---------|---------|
| IF Calibration II | R   |       |       |       | FCD4  | FCD3  | FCD2    | FCD1    | FCD0    |
|                   | W   | PWORS | TRT2  | TRT1  | TRT0  | MRCKS | RNUM1_2 | RNUM1_1 | RNUM1_0 |
| Reset             |     |       |       |       |       | 0     |         | 1       | 1       |

FCD [4:0]: IF filter calibration deviation from goal.

## PWORS: TX high power setting.

[0]: Disable. [1]: Enable.

TRT [2:0]: TX Ramp down discharge current select. Recommand value=[000]

## RNUM1[2:0]: sync word clock recovery manual setting.

#### AMSV [2:0]: TX Ramp up Timing Select.

[000]: 2us, [001]: 4us. [010]: 6us. [011]: 8us. [100]: 10us, [101]: 12us. [110]: 14us. [111]: 16us. Real timing is multiplied by 2^(RMP[1:0])

# AMVS: TX Ramp Up Enable.

[0]: Disable. [1]: Enable.

# 9.2.37 VCO current Calibration Register (Address: 0x826h)

| Name        | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| VCO current | R   |       |       |       | FVCC  | VCB3  | VCB2  | VCB1  | VCB0  |
| Calibration | W   | Ĩ     | PKS   | VCCS  | MVCS  | VCOC3 | VCOC2 | VCOC1 | VCOC0 |
| Reset       |     | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     |

# VCCS: Reserved for internal usage only. Shall be set [0].

MVCS: VCO current calibration value select. Recommend MVCS = [0]. [0]: Auto calibration value. [1]: Manual calibration value.

#### VCOC [3:0]: VCO current manual calibration value.

# FVCC: VCO current auto calibration flag. [0]: Pass. [1]: Fail.

#### VCB [3:0]: VCO current calibration value.

MVCS= 0: Auto calibration value (VCB). MVCS= 1: Manual calibration value (VCOC).

Refer to chapter 15 for details.

# 9.2.38 VCO Single band Calibration Register I (Address: 0x827h)

| Name            | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| VCO Single band | R   | -     | -     |       |       | VBCF  | VB2   | VB1   | VB0   |
| Calibration I   | W   | DCD1  | DCD0  | DAGS  | PDV   | MVBS  | MVB2  | MVB1  | MVB0  |
| Reset           |     | 1     | 1     | 0     |       | 0     | 1     | 0     | 0     |



DCD [1:0]: VCO Deviation Calibration Delay. Recommend DCD = [01]. Delay time = PDL (Delay Register I, 17h)  $\times$  (DDC + 1).

DAGS: DAG Calibration Value Select. Recommend DAGS = [0]. [0]: Auto calibration value. [1]: Manual calibration value.

MVBS: VCO bank calibration value select. Recommend MVBS = [0]. [0]: Auto calibration value. [1]: Manual calibration value.

# VB [2:0]: VCO bank calibration value.

# 9.2.39 VCO Single band Calibration Register II (Address: 0x828h)

| MVB [2:0]: VCO band                                                   | l man              | ual calibrat | tion value. |              |            |       |       | •     |       |
|-----------------------------------------------------------------------|--------------------|--------------|-------------|--------------|------------|-------|-------|-------|-------|
| VBCF: VCO band aut<br>[0]: Pass. [1]: Fail.                           | o cali             | bration flag |             |              |            |       |       |       |       |
| VB [2:0]: VCO bank o<br>MVBS= 0: Auto calibra<br>MVBS= 1: Manual cali |                    |              |             |              |            |       |       |       |       |
| Refer to chapter 15 for                                               | <sup>r</sup> detai | ls.          |             |              |            |       |       |       |       |
| 9.2.39 VCO Single                                                     | band               | Calibratio   | on Registe  | er II (Addre | ess: 0x828 | 3h) 🔨 |       |       |       |
| Name                                                                  | R/W                | Bit 7        | Bit 6       | Bit 5        | Bit 4      | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| VCO Single band                                                       | W                  | DAMV1        | DAMV0       | VTH2         | VTH1       | VTH0  | VTL2  | VTL1  | VTL0  |
| Calibration II                                                        |                    |              |             |              |            |       |       |       |       |
| Reset                                                                 |                    | 1            | 0           | 1            | 1          | 1     | 0     | 1     | 1     |

DMV [1:0]: Demodulator D/A Voltage Range Select. Recommend DMV = [10]. [00]: 1/32\*1.2. [01]: 1/16\*1.2. [10]: 1/8\*1.2. [11]: 1/4\*1.2.

# VTH [2:0]: VCO tuning voltage upper threshold level setting

[000]: VDD\_A - 0.6V. [001]: VDD\_A - 0.7V. [010]: VDD\_A - 0.8V. [011]: VDD\_A - 0.9V [100]: VDD\_A - 1.0V. [101]: VDD\_A - 1.1V. [110]: VDD\_A - 1.2V. [111]: VDD\_A - 1.3V

VDD\_A is on chip analog regulator output voltage

# VTL [2:0]: VCO tuning voltage lower threshold level setting

[000]: 0.1V. [001]: 0.2V. [010]: 0.3V. [011]: 0.4V. [100]: 0.5V. [101]: 0.6V. [110]: 0.7V. [111]: 0.8V

# 9.2.40 Battery detect Register (Address: 0x829h)

| Name           | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Battery detect | R   |       | RGV1  | RGV0  | BDF   | BVT2  | BVT1  | BVT0  | BD_E  |
|                | W   |       | RGV1  | RGV0  | PACTL | BVT2  | BVT1  | BVT0  | BD_E  |
| Reset          |     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 0     |

PACTL: Reserved for internal usage only. Shall be set to [0].

RGS: VDD\_D voltage setting in Sleep mode. [0]: 3/5 \* REGI. [1]: 3/4 \* REGI.

RGV [1:0]: VDD\_D and VDD\_A voltage setting in non-Sleep mode. Recommend RGV = [11]. [00]: 2.1V. [01]: 2.0V. [10]: 1.9V. [11]: 1.8V.

QDS: Reserved for internal usage only. Shall be set [0].

# BVT [2:0]: Battery voltage detect threshold.

[000]: 2.0V. [001]: 2.1V. [010]: 2.2V. [011]: 2.3V. [100]: 2.4V. [101]: 2.5V. [110]: 2.6V. [111]: 2.7V.

# BD\_E: Battery detect enable.

[0]: Disable. [1]: Enable. It will be clear after battery detection done.

**BDF: Battery detection flag.** 



**[0]:** Battery voltage less than threshold. **[1]:** Battery voltage greater than threshold.

Refer to chapter 19 for details.

# 9.2.41 TX test Register (Address: 0x82Ah)

| Name    | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| TX test | W   | IFBC1 | IFBC0 | TXCS  | PAC1  | PAC0  | TBG2  | TBG1  | TBG0  |
| Reset   |     | Ð     | θ     | 0     | 1     | 0     | 1     | 1 🔹   | 1     |

RMP [1:0]: PA ramp up timing scale. Delay scales 2^(RMP [1:0])

**TXCS: TX Current Setting.** 

PAC [1:0]: PA Current Setting.

TBG [2:0]: TX Buffer Setting.

| Recom | mend s | etting                                                                             | Typical TX current (mA)                                                               |  |  |  |
|-------|--------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| TXCS  | TBG    | PAC                                                                                |                                                                                       |  |  |  |
| 1     | 7      | 3                                                                                  | 21.8                                                                                  |  |  |  |
| 1     | 7      | 2                                                                                  | 19                                                                                    |  |  |  |
| 1     | 6      | 1                                                                                  | 16                                                                                    |  |  |  |
| 1     | 5      | 1                                                                                  | 14.5                                                                                  |  |  |  |
| 1     | 4      | 1                                                                                  | 13.9                                                                                  |  |  |  |
|       |        | TXCS         TBG           1         7           1         7           1         6 | 1         7         3           1         7         2           1         6         1 |  |  |  |

# 9.2.42 Rx DEM test Register I (Address: 0x82Bh)

| Name          | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Rx DEM test I | W   | DMT   | DCM1  | DCM0  | MLP1  | MLP0  | SLF2  | SLF1  | SLF0  |
| Reset         |     | 0     | 1     | 1     | 0     | 0     | 1     | 0     | 0     |

# DMT: Reserved for internal usage only. Shall be set to [0].

# DCM [1:0]: Demodulator DC estimation mode.

[00]: Fix mode (For testing only). DC level is set by DCV [7:0].

[01]: Preamble hold mode. DC level is preamble average value.

[10]: Average and hold mode. DC level is the average value hold about 8 bit data rate later after preamble is detected. [11]: Payload average mode (For internal usage). DC level is payload data average.

MLP [1:0]: Reserved for internal usage only. Shall be set to [000].

SLF [2:0]: Reserved for internal usage only. Shall be set to [111].

# 9.2.43 Rx DEM test Register II (Address: 0x82Ch)

| Name           | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Rx DEM test II | W   | DCV7  | DCV6  | DCV5  | DCV4  | DCV3  | DCV2  | DCV1  | DCV0  |
| Reset          |     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

DCV [7:0]: Demodulator fix mode DC value. Recommend DCV = [0x80].

# 9.2.44 Charge Pump Current Register (Address: 0x82Dh)

| Name                   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Charge Pump<br>Current | W   | CPM3  | CPM2  | CPM1  | CPM0  | CPT3  | CPT2  | CPT1  | CPT0  |
| Reset                  |     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |



- **CPM [3:0]: Charge Pump Current Setting for VM loop. Recommend CPM = [1111].** Charge pump current = (CPM + 1) / 16 mA.
- **CPT [3:0]: Charge Pump Current Setting for VT loop. Recommend CPT = [1111].** Charge pump current = (CPT + 1) / 16 mA.

## 9.2.45 Crystal test Register (Address: 0x82Eh)

| 5.2.45 Orystar tes | . ittegi |       | C33. 0X02 |       |       |       |       |       |       |
|--------------------|----------|-------|-----------|-------|-------|-------|-------|-------|-------|
| Name               | R/W      | Bit 7 | Bit 6     | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Crystal test       | W        | PRS   | QDS-      | QLIM  | DBD   | XCC1  | XCC0  | XCP1  | XCP0  |
| Reset              |          | 0     | 0         | 0     | 0     | 0     | 1     | 0     | 1     |

#### PRS: Limiter amplifier discharge manual select. Recommend PRS =[0]. MIC: Mixer buffer gain setting [0]: 0dB[1]: 6dB

QLIM: quick charge select for IF limiter amp.

[0]: disable. [1]: enable (QLIM fall down delay 10us)

QDS: VDD\_A Quick Discharge Select. [0]: Disable. [1]: Enable.

DBD: Reserved for internal usage only. Shall be set to [0].

XCC[1:0]: Crystal current setting. Shall be set to [01].

XCP [1:0]: Crystal regualting couple setting. Shall be set to [01].

# 9.2.46 PLL test Register (Address: 0x82Fh)

| Name     | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| PLL test | W   | MDEN  | PMPE  | PRIC1 | PRIC0 | PRRC1 | PRRC0 | SDPW  | NSDO  |
| Reset    |     | 0     |       | 1     | 0     | 1     | 0     | 0     | 0     |

MDEN : Use for Manual VCO Calibration. Shall be set to [0].

PMPE: Reserved for internal usage only. Shall be set to [1].

PRRC [1:0]: Reserved for internal usage only. Shall be set to [00].

PRIC [1:0]: Reserved for internal usage only. Shall be set to [01].

SDPW: Reserved for internal usage only. Shall be set to [0].

NSDO: Reserved for internal usage only. Shall be set to [1].

# 9.2.47 VCO test Register I (Address: 0x830h)

| Name       | R/W | Bit 7  | Bit 6  | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------|-----|--------|--------|--------|-------|-------|-------|-------|-------|
| VCO test I | W   | DEVGD2 | DEVGD1 | DEVGD0 | TLB1  | TLB0  | RLB1  | RLB0  |       |
| Reset      |     | 0      | 0      | 0      | 1     | 1     | 0     | 1     | 0     |

DEVGD [2:0]: Sigma Delta Modulator Data Delay Setting. Recommend DEVGD = [000].

TLB [1:0]: Reserved for internal usage only. Shall be set to [11].

RLB [1:0]: Reserved for internal usage only. Shall be set to [00].



# 9.2.48 VCO test Register II (Address: 0x831h)

| Name        | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| VCO test II | W   | CHD3  | CHD2  | CHD1  | CHD0  | RFT3  | RFT2  | RFT1  | RFT0  |
| Reset       |     | 0     | 1     | 0     | 1     | 0     | 0     | 0     | 0     |

RFT [3:0]: RF analog pin configuration for testing. Recommend RFT= [0000].

CHD [3:0]: Channel Frequency Offset for Deviation Calibration.

Offset channel number = +/- (CHD + 1).

# 9.2.49 IFAT Register (Address: 0x832h)

| Name        | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| VCO test II | W   | MPDT5 | MPDT4 | MPDT3 | MPDT2 | MPDT1 | MPDT0 |       | LIMC  |
| Reset       |     | 1     | 0     | 0     | 1     | 0     | 0     | 1     | 1     |

MPDT[5:0]: TX ramp up/down scale select.

IFBC: Reserved for internal usage only. Shall be set to [1].

LIMC: Reserved for internal usage only. Shall be set to [1].

## 9.2.50 RFT Test Register I(Address: 0x833h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RFT1  | W   | ASMV2 | ASMV1 | ASMV0 | SDMS  | OLM   | CPCS  | CPH   | CPS   |
| Reset |     | 0     | 0     | 1     | 1     | 0     | 1     | 1     | 1     |

## RGC [1:0]: Low power band-gap current select. Recommend RGC = [01]

VRPL [1:0]: internal PLL loop filter resistor value select. [00]: 500 ohm. [01]: 666 ohm. [10]: 1 K ohm. [11]: 2K ohm.

#### CPCS: Charge Pump Current Select. Shall be set to [0]. [0]: Use CPM for TX, CPT for RX. [1]: Use CPTX for TX, CPRX for RX.

CPH: Charge Pump High Current. Shall be set to [0]. [0]: Normal. [1]: High.

OLM : Open Loop Modulation Enable. Shall be set to [0]. [0]: Disable. [1]: Enable.

# SMDS: Reserved for internal usage only. Shall be set to [1].

CPCS : Charge Pump Current Select. Shall be set to [0]. [0]: Use CPM for TX, CPT for RX.

[1]: Use CPTX for TX, CPRX for RX.

# 9.2.50 RFT Test Register II(Address: 0x834h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RFT2  | W   |       | CRS3  | CRS2  | CRS1  | CRS0  | SRS2  | SRS1  | SRS0  |
| NE12  | R   |       | CRSR3 | CRSR2 | CRSR1 | CRSR0 | SRSR2 | SRSR1 | SRSR0 |
| Reset |     | 1     | 1     | 1     | 0     | 0     | 1     | 0     | 0     |

SRS [2:0]: RSSI voltage curve slope fine time setting.

CRS [2:0]: RSSI voltage offset fine trim setting.



# 9.2.50 RFT Test Register III(Address: 0x835h)

| Name    | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RFT3    | W   |       |       | STM5  | STM4  | STM3  | STM2  | STM1  | STM0  |
| IXI I S | R   | -     | -     | STMR5 | STMR4 | STMR3 | STMR2 | STMR1 | STMR0 |
| Reset   |     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     |

STMP: Temp voltage ADC reading select.

[0]: 1 scale / degree C. [1]: 2 scale/degree C.

STM [5:0]: ADC voltage fine trim setting.

# 9.2.50 RFT Test Register IV(Address: 0x836h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RFT3  | W   |       | DVI1  | DVI0  | FBG4  | FBG3  | FBG2  | FBG1  | FBG0  |
| KE13  | R   |       |       |       | FBGR4 | FBGR3 | FBGR2 | FBGR1 | FBGR0 |
| Reset |     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     |

FBG [4:0]: Bandgap voltage SPI fine trim setting. DVI[1:0]:

# 9.2.50 RFT Test Register V(Address: 0x837h)

| Name    | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RFT3    | W   | FGC1  | FGC0  | CTR5  | CTR4  | CTR3  | CTR2  | CTR1  | CTR0  |
| IXI I S | R   | FGCR1 | FGCR0 | CTRR5 | CTRR4 | CTRR3 | CTRR2 | CTRR1 | CTRR0 |
| Reset   |     |       |       | 1     | 0     | 0     | 0     | 0     | 0     |

FGC[1:0]: BPF fine gain control.

CTR [5:0]: ADC voltage SPI fine trim setting.

# 9.2.50 Channel Index Register (Address: 0x838h)

| Name          | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-------|--------|-------|-------|
| Channel Index | W   |       | BLE   |       |       | CHID  | X[5:0] |       |       |
| Reset         |     |       |       | 1     | 0     | 0     | 0      | 0     | 0     |

BLE:

CHIDX[5:0]:

# 9.2.50 CRC Register 1(Address: 0x839h)

| Name                 | R/W | Bit 7     | Bit 6     | Bit 5     | Bit 4     | Bit 3     | Bit 2     | Bit 1     | Bit 0     |
|----------------------|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CRC1                 | W   | CRCINIT23 | CRCINIT22 | CRCINIT21 | CRCINIT20 | CRCINIT19 | CRCINIT18 | CRCINIT17 | CRCINIT16 |
| R <mark>es</mark> et |     |           |           | 1         | 0         | 0         | 0         | 0         | 0         |

# CRCINIT[23:0]: CRC initial value

# 9.2.50 CRC Register 2(Address: 0x83Ah)

| Name  | R/W | Bit 7     | Bit 6     | Bit 5     | Bit 4     | Bit 3     | Bit 2     | Bit 1    | Bit 0    |
|-------|-----|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| CRC2  | W   | CRCINIT15 | CRCINIT14 | CRCINIT13 | CRCINIT12 | CRCINIT11 | CRCINIT10 | CRCINIT9 | CRCINIT8 |
| Reset |     |           |           | 1         | 0         | 0         | 0         | 0        | 0        |

#### CRCINIT[23:0]: CRC initial value



# 9.2.50 CRC Register 3(Address: 0x83Bh)

| Name  | R/W | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|-------|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| CRC3  | W   | CRCINIT7 | CRCINIT6 | CRCINIT5 | CRCINIT4 | CRCINIT3 | CRCINIT2 | CRCINIT1 | CRCINIT0 |
| Reset |     |          |          | 1        | 0        | 0        | 0        | 0        | 0        |

## CRCINR[23:0]: CRC initial value

## 9.2.50 CRC Register 4(Address: 0x83Ch)

| Name  | R/W | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|-------|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| CRC4  | W   | CRCINR23 | CRCINR22 | CRCINR21 | CRCINR20 | CRCINR19 | CRCINR18 | CRCINR17 | CRCINR16 |
| Reset |     |          |          | 1        | 0        | 0        | 0        | 0        | 0        |

## CRCINR[23:0]: CRC initial value

# 9.2.50 CRC Register 5(Address: 0x83Dh)

| Name  | R/W | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1   | Bit 0   |
|-------|-----|----------|----------|----------|----------|----------|----------|---------|---------|
| CRC5  | W   | CRCINR15 | CRCINR14 | CRCINR13 | CRCINR12 | CRCINR11 | CRCINR10 | CRCINR9 | CRCINR8 |
| Reset |     |          |          | 1        | 0        | 0        | 0        | 0       | 0       |

# CRCINR[23:0]: CRC initial value

# 9.2.50 CRC Register 6(Address: 0x83Eh)

| Name  | R/W | Bit 7   | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|-------|-----|---------|----------|----------|----------|----------|----------|----------|----------|
| CRC6  | W   | CRCINR7 | CRCINIR6 | CRCINIR5 | CRCINIR4 | CRCINIR3 | CRCINIR2 | CRCINIR1 | CRCINIR0 |
| Reset |     |         |          | 1        | 0        | 0        | 0        | 0        | 0        |

# CRCINR[23:0]: CRC initial value

# 9.2.51 VCO Single band Calibration Register I (Address: 0x83Fh)

|                 |     |       |       |       |       | ,     |       |       |       |
|-----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Name            | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| VCO Single band | R   | ADAG7 | ADAG6 | ADAG5 | ADAG4 | ADAG3 | ADAG2 | ADAG1 | ADAG0 |
| Calibration III | W   | DAGM7 | DAGM6 | DAGM5 | DAGM4 | DAGM3 | DAGM2 | DAGM1 | DAGM0 |
| Reset           |     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

# ADAG [7:0]: Auto DAG Calibration Value.

DAGM [7:0]: DAG Manual Setting Value. Recommend DAGM = [0x80].

# 9.2.52 VCO deviation Calibration Register I(Address: 0x840h)

| Name            | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|-----------------|-----|-------|-------|-------|-------|--------|--------|-------|-------|
| VCO Deviation I | W   | DEVS3 | DEVS2 | DEVS1 | DEVS0 | DAMR_M | VMTE_M | VMS_M | MSEL  |
| VCO Deviation I | R   | DEVA7 | DEVA6 | DEVA5 | DEVA4 | DEVA3  | DEVA2  | DEVA1 | DEVA0 |
| Reset           |     | 0     | 1     | 1     | 1     | 0      | 0      | 0     | 0     |

# DEVA [7:0]: Deviation Output Value.

MVDS (29h)= 0: Auto calibration value ((DEVC / 8)  $\times$  (DEVS + 1)), MVDS (29h)= 1: Manual calibration value (DEVM [6:0]).



DEVS [3:0]: Deviation Output Scaling. Recommend DEVS = [0011].

DAMR\_M: DAMR Manual Enable. Recommend DAMR\_M = [0]. [0]: Disable. [1]: Enable.

VMTE\_M: VMT Manual Enable. Recommend VMTE\_M = [0]. [0]: Disable. [1]: Enable.

VMS\_M: VM Manual Enable. Recommend VMS\_M = [0]. [0]: Disable. [1]: Enable.

MSEL: VMS, VMTE and DAMR control select. Recommend MSEL = [0]. [0]: Auto control. [1]: Manual control.

# 9.2.53 VCO deviation Calibration Register II(Address: 0x841h)

| Name             | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| VCO Deviation II | R   | DEVC7 | DEVC6 | DEVC5 | DEVC4 | DEVC3 | DEVC2 | DEVC1 | DEVC0 |
|                  | W   | MVDS  | DEVM6 | DEVM5 | DEVM4 | DEVM3 | DEVM2 | DEVM1 | DEVM0 |
| Reset            |     | 0     | 0     | 1     | 0     | 1     | 0     | 0     | 0     |

# DEVC [7:0]: VCO Deviation Auto Calibration Value.

MVDS: VCO Deviation Calibration Select. Recommend MVDS = [0]. [0]: Auto calibration value. [1]: Manual calibration value.

## DEVM [6:0]: VCO Deviation Manual Calibration Value.

Refer to chapter 15 for details.

# 9.2.54 VCO deviation Calibration Register III(Address: 0x842h)

| Name              | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| VCO Deviation III | W/R | VMG7  | VMG6  | VMG5  | VMG4  | VMG3  | VMG2  | VMG1  | VMG0  |
| Reset             |     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

VMG [7:0]: VM Center Value for Deviation Calibration. Recommend VMG [7:0] = [0x80].

# 9.2.55 ADC Control Register II(Address: 0x843h)

| Name  | R/W | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|--------|--------|--------|--------|-------|-------|-------|-------|
| ADCII | W   | AVSEL1 | AVSEL0 | MVSEL1 | MVSEL0 | RADC  | FPS2  | FPS1  | FPS0  |
| Reset |     |        | 0      | 1      | 0      | 0     | 0     | 0     | 0     |

**AVSEL [1:0]:** ADC average times (for Carrier / temeperature sensor / external ADC). Recommend AVSEL = [10]. [00]: No average. [01]: Average 2 times. [10]: Average 4 times. [11]: Average 8 times.

**MVSEL [1:0]:** ADC average times (for VCO calibration and RSSI). Recommend MVSEL = [01].

[00]: Average 8 times. [01]: Average 16 times. [10]: Average 32 times. [11]: Average 64 times.

**RADC**: ADC Read Out Average Mode.

[0]: 1, 2, 4, 8 average mode. The average number is according to the setting of AVSEL in RX Gain Register (IV).

[1]: 8, 16, 32, 64 average mode. The average number is according to the setting of MVSEL in RX Gain Register (IV)

# FPS[2:0]: Gaussian filter BT setting.

| GDR=0.   |     |      |     |      |      |     |      |     |
|----------|-----|------|-----|------|------|-----|------|-----|
| FPS[2:0] | 7   | 6    | 5   | 4    | 3    | 2   | 1    | 0   |
| BT       | 1.4 | 1.3  | 1.2 | 1.1  | 0.75 | 0.7 | 0.65 | 0.6 |
| GDR=1.   |     |      |     |      |      |     |      |     |
| FPS[2:0] | 7   | 6    | 5   | 4    | 3    | 2   | 1    | 0   |
| BT       | 0.7 | 0.65 | 0.6 | 0.55 | Х    | Х   | Х    | Х   |



#### 9.2.56 WOR Register(Address: 0x844h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| WOR   | W   | MVS1  | MVS0  | MRCT5 | MRCT4 | MRCT3 | MRCT2 | MRCT1 | MRCT0 |
| Reset |     | 1     | 1     | 1     | 1     | 0     | 0     | 1     | 0     |

#### MVS[1:0]: WOR calibration moving average setting.

[00]: Average 2 times. [01]: Average 4 times. [10]: Average 8 times. [11]: Average 16 times.

#### MRCT[5:0]: WOR calibration manual setting. when MAN=1.

#### 9.2.57 WOT Register(Address: 0x844h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| WOT   | W   | RCTS  | SPSS  | WMODE | WN1   | WN0   | RCOT2 | RCOT1 | RCOT0 |
| Reset |     |       |       |       | 0     | 0     | 0     | 0     | 1     |

#### RCOT[2:0]: RCOSC current select for RC oscillator calibration.

WN[1:0]: WOT Wake up times.

WMODE: Wakeup mode select. [1]:WOT [0]:WOR

SPSS: Mode back select in WOT mode. [0]:Standby mode. [1]:PLL mode.

**RCTS:** Internal / External 32.768k Hz oscillator selection.

#### 9.2.58 Channel Group Register I (Address: 0x845h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| CHGL  | R/W | CHGL7 | CHGL6 | CHGL5 | CHGL4 | CHGL3 | CHGL2 | CHGL1 | CHGL0 |
| Reset |     | 0     | 0     | 1     | 0     | 1     | 0     | 0     | 0     |

#### CHGL [7:0]: PLL channel group low boundary setting.

Refer to chapter 15 for details.

#### 9.2.59 Channel Group Register II (Address: 0x846h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| CHGH  | R/W | CHGH7 | CHGH6 | CHGH5 | CHGH4 | CHGH3 | CHGH2 | CHGH1 | CHGH0 |
| Reset |     | 0     | 1     | 0     | 1     | 0     | 0     | 0     | 0     |

CHGH [7:0]: PLL channel group high boundary setting. Refer to chapter 15 for details.

#### PLL frequency is divided into 3 groups:

|        | Channel       |
|--------|---------------|
| Group1 | 0 ~ CHGL-1    |
| Group2 | CHGL ~ CHGH-1 |
| Group3 | CHGH ~ 255    |

Note: Each group needs its own VCO current, bank and deviation calibration. Use the same calibration value for the frequency in the same group.

#### 9.2.60 Charge Pump Current Register II (Address: 0x847h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| CPC II | W   | CPTX3 | CPTX2 | CPTX1 | CPTX0 | CPRX3 | CPRX2 | CPRX1 | CPRX0 |



| Reset | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
|-------|---|---|---|---|---|---|---|---|

CPTX [3:0]: Charge Pump Current Setting for TX mode. Recommend CPTX = [0010]. Charge pump current = (CPTX + 1) / 16 mA.

CPRX [3:0]: Charge Pump Current Setting for RX mode. Recommend CPRX = [0010]. Charge pump current = (CPRX + 1) / 16 mA.

#### 9.2.61 VCO Modulation Delay Register (Address: 0x848h)

| Name      | R/W | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1 | Bit 0 |
|-----------|-----|-------|--------|--------|--------|--------|-------|-------|-------|
| VCO Delay | W   |       | INTPRC | DEVFD2 | DEVFD1 | DEVFD0 | DEVD2 | DEVD1 | DEVD0 |
| Reset     |     | 0     | 0      | 1      | 0      | 1      | 0     | 0     | 0     |

INTPRC: Internal PLL loop filter resistor and capacitor select.

[0]: disable. [1]: enable

DEVFD [2:0]: VCO Modulation Data Delay by 8x over-sampling Clock. Recommend DEVFD = [101].

DEVD [2:0]: VCO Modulation Data Delay by XCPCK Clock. Recommend DEVD = [000].

#### 9.2.62 Internal Capacitance Register (Address: 0x849h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|-----|-------|-------|--------|--------|--------|--------|--------|--------|
| INTC  | W   | VRPL1 | VRPL0 | VCOSC5 | VCOSC4 | VCOSC3 | VCOSC2 | VCOSC1 | VCOSC0 |
| Reset |     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      |

VRPL [1:0]: internal PLL loop filter resistor value select.

[00]: 500 ohm. [01]: 666 ohm. [10]: 1 K ohm. [11]: 2K ohm.

#### VCOSC[5:0]

#### 9.2.63 RX Detection Register (Address: 0x84Ah)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|-----|-------|-------|--------|--------|--------|--------|--------|--------|
| DET   | W   |       |       | PREDN2 | PREDN1 | PREDN0 | PREUP2 | PREUP1 | PREUP0 |
| Reset |     |       |       |        |        |        |        |        |        |

#### PREDN[2:0]: Preamble detect low threshold setting.

PREUP[2:0]: Preamble detect high threshold setting.

#### 9.2.63 ID Register 0 (Address: 0x84Bh)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ID0   | W/R | ID31  | ID30  | ID29  | ID28  | ID27  | ID26  | ID25  | ID24  |
| Reset |     |       |       |       |       |       |       |       |       |

ID[31:0]: ID Data.

#### 9.2.63 ID Register 1 (Address: 0x84Ch)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ID1   | W/R | ID23  | ID22  | ID21  | ID20  | ID19  | ID18  | ID17  | ID16  |
| Reset |     |       |       |       |       |       |       |       |       |

ID[31:0]: ID Data.



#### 9.2.63 ID Register 2 (Address: 0x84Dh)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ID2   | W/R | ID15  | ID14  | ID13  | ID12  | ID11  | ID10  | ID9   | ID8   |
| Reset |     |       |       |       |       |       |       |       |       |

ID[31:0]: ID Data.

### 9.2.63 ID Register 3 (Address: 0x84Eh)

| 3.2.03 ID Register | 5 (Л | uic33. 0X | 04611) |       |       |       |       |       |       |
|--------------------|------|-----------|--------|-------|-------|-------|-------|-------|-------|
| Name               | R/W  | Bit 7     | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| ID3                | W/R  | ID7       | ID6    | ID5   | ID4   | ID3   | ID2   | ID1   | ID0   |
| Reset              |      |           |        |       |       |       |       |       |       |

ID[31:0]: ID Data.

#### 9.2.63 DID Register 0 (Address: 0x84Fh)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| DID0  | R   | DID31 | DID30 | DID29 | DID28 | DID27 | DID26 | DID25 | DID24 |
| Reset |     |       |       |       |       |       |       |       |       |

DID[31:0]: Device ID.

#### 9.2.63 DID Register 1 (Address: 0x850h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| DID1  | R   | DID23 | DID22 | DID21 | DID20 | DID19 | DID18 | DID17 | DID16 |
| Reset |     |       |       |       |       |       |       |       |       |

DID[31:0]: Device ID.

#### 9.2.63 DID Register 2 (Address: 0x851h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| DID2  | R   | DID15 | DID14 | DID13 | DID12 | DID11 | DID10 | DID9  | DID8  |
| Reset |     |       |       |       |       |       |       |       |       |

#### DID[31:0]: Device ID.

#### 9.2.63 DID Register 3 (Address: 0x852h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| DID3  | R   | DID7  | DID6  | DID5  | DID4  | DID3  | DID2  | DID1  | DID0  |
| Reset |     |       |       |       |       |       |       |       |       |

DID[31:0]: Device ID.

#### 9.2.63 EXT Register 1 (Address: 0x853h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EXT1  | W/R |       | XEC   | BREV  | BGS   | LIMB  | ADCCS | BOD   | REGR  |
| Reset |     |       |       |       |       |       |       |       |       |

XEC: BREV: BGS: LIMB: ADCCS: BOD: REGR:



#### 9.2.63 EXT Register 2 (Address: 0x854h)

| Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EXT2  | W   | VTRB3 | VTRB2 | VTRB1 | VTRB0 | VMRB3 | VMRB2 | VMRB1 | VMRB0 |
| Reset |     |       |       |       |       |       |       |       |       |

VTRB[3:0]: VMRB[3:0]:

### 9.2.63 EXT Register 3 (Address: 0x855h)

| CIEICO EXT Region |     |        |        |        |        |        |        |       |       |
|-------------------|-----|--------|--------|--------|--------|--------|--------|-------|-------|
| Name              | R/W | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
| EXT3              | W   | EXT3_5 | EXT3_4 | EXT3_3 | EXT3_2 | EXT3_1 | EXT3_0 | VCS   | VCSW  |
| Reset             |     |        |        |        |        |        |        |       |       |

#### VCS:

VCSW:

EXT3[5:0]: Reserved.

#### 9.2.63 EXT Register 4 (Address: 0x856h)

| Name  | R/W | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|-------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| EXT4  | W   | EXT4_7 | EXT4_6 | EXT4_5 | EXT4_4 | EXT4_3 | EXT4_2 | EXT4_1 | EXT4_0 |
| Reset |     |        |        |        |        |        |        |        |        |

EXT4[7:0]: Reserved

#### 9.2.63 ADC Control Register (Address: 0x857h)

| Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0 |
|--------|-----|-------|-------|-------|-------|--------|--------|--------|-------|
| ADCCTL | W   | BUFS  | CKS1  | CKS0  | MODE  | MVS[2] | MVS[1] | MVS[0] | ADCE  |
| ADCOIL | R   |       |       |       | MODE  | MVS[2] | MVS[1] | MVS[0] | ADCE  |
| Reset  |     |       |       |       |       |        |        |        |       |

BUFS: CKS[1:0]: MODE: MVS[2:0]:

ADCE: ADC measurement enable

#### 9.2.63 ADC Value Register 1 (Address: 0x858h)

| Name    | R/W | Bit 7     | Bit 6     | Bit 5    | Bit 4    | Bit 3   | Bit 2   | Bit 1  | Bit 0  |
|---------|-----|-----------|-----------|----------|----------|---------|---------|--------|--------|
| ADCAVG1 | W   |           |           |          |          |         |         | ENADC  | DTMP   |
| ADOAVOT | R   | MVADC[11] | MVADC[10] | MVADC[9] | MVADC[8] | ADC[11] | ADC[10] | ADC[9] | ADC[8] |
| Reset   |     |           |           |          |          |         |         |        |        |

ENADC: Enable ADC. MVADC [11:0]: Moving average ADC output value ADC [11:0]: ADC output value

#### 9.2.63 ADC Value Register 2 (Address: 0x859h)

| Name    | R/W | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|---------|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| ADCAVG2 | R   | MVADC[7] | MVADC[6] | MVADC[5] | MVADC[4] | MVADC[3] | MVADC[2] | MVADC[1] | MVADC[0] |
| Reset   |     |          |          |          |          |          |          |          |          |

MVADC [11:0]: Moving average ADC output value



#### 9.2.63 ADC Value Register 3 (Address: 0x85Ah)

| Name       R/W       Bit 7       Bit 6       Bit 5       Bit 4       Bit 3       Bit 2       Bit 1       Bit 0         ADCAVG3       R       ADC[7]       ADC[6]       ADC[5]       ADC[4]       ADC[3]       ADC[2]       ADC[1]       ADC[0]         Reset       Image: Comparison of the second sec | Name    |            |        | 11655. 080 |        |        |        |        |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|--------|------------|--------|--------|--------|--------|--------|--------|
| Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | R/W        | Bit 7  | Bit 6      | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
| Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADCAVG3 | R          | ADC[7] | ADC[6]     | ADC[5] | ADC[4] | ADC[3] | ADC[2] | ADC[1] | ADC[0] |
| C [11:0]: ADC output value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reset   |            |        |            |        |        |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | litput val | lue    |            |        |        |        |        |        |        |



### **10.SOC Architectural Overview**

A8105 microcontroller is instruction set compatible with the industry standard 8051. Besides IEEE802.15.4 DSSS RF transceiver, A8105 integrates many features, three 8/16bit counters/timers, watchdog timer, RTC, UART, SPI interface, I<sup>2</sup>C interface, 2 channels PWM, 4 channels ADC, battery detector and AES engine. The interrupt controller is extended to support 6 interrupt sources; watchdog timer, RTC, SPI, I<sup>2</sup>C, ADC, RF and AES engine. A8105 includes TTAG (2-wire) debug circuitry that provides full time, real-time, in-circuit debugging.

### 10.1 Pipeline 8051 CPU

A8105 microcontroller has pipelined RSIC architecture 10 times faster compared to standard 8051 architecture. The pipeline 8051 is fully compatible with the MCS-51<sup>™</sup> instruction set. User can use standard 8051 assemblers and compilers to develop software. The pipelined architecture 8051 has greatly increases its instruction throughput over the standard 8051 architecture. A8105 has a total of 110 instructions. The table below shows the total number of instructions that require each execution time. For more detail information of instruction, please refer Table 10.1.

| Clock to Execute       | 1  | 2  | 3  | 4  | 5 | 6 |
|------------------------|----|----|----|----|---|---|
| Number of instructions | 24 | 38 | 29 | 11 | 8 | 1 |

### **10.2 Memory Organization**

The memory organization of A8105 is similar to the standard 8051. The memory organization is shown as figure 10.1

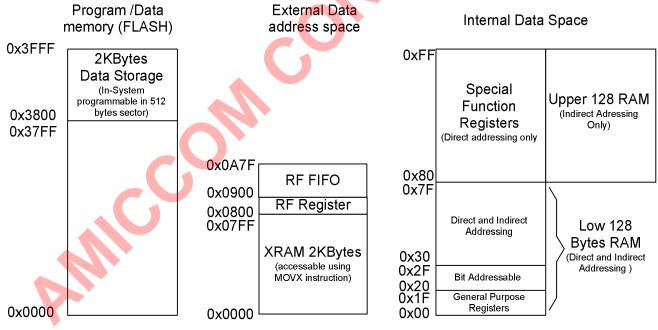



Figure 10.1 Memory Organization

#### 10.2.1 Program memory

The standard 8051 core has 64KB program memory space. A8105 implement 32KB flash in two 16x 8Kb flash macro. The last 2KB program memory space (0x 7800 ~ 0x7FFF) supports IAP (In-Application Programming) function. The each block size in this area is 128Bytes. User has 16 blocks in 2KB program memory space to storage data. Program memory is normally assumed to be read-only. However, A8105 can write to program memory by IAP function call. Please reference xxxxx to write program memory.



#### 10.2.2 Data memory

The A8105 includes 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode. The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 10.1 illustrates the data memory organization of the A8105.

#### **10.2.3 General Purpose Registers**

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 9.4). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

#### 10.2.4 Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination). The MCS-51<sup>™</sup> assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction: MOV C, 22.3h ;moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

#### **10.2.5 Special Function Registers**

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51<sup>™</sup> instruction set. Table 9.2 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCON0, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table xxx, for a detailed description of each register.

#### 10.2.6 Stack

A8105 has 8-bit stack point called SP (0x81) located in the internal RAM space. It is incremented before data is stored during PUSH and CALL execution and decremented after data is popped during POP, RET and RETI execution. In the other words it always points to the last valid stack byte. The SP is accessed as any other SFRS.

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 81h<br>SP    | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     |

Stack pointer register

#### 10.2.7 Data Pointer Register

A8105 are implemented dual data pointer registers, auto increment and auto decrement to speed up data block copying. DPTR0 and DPTR1 are located at four SFR addresses. Active DPTR register is selected by SEL bit (0x86.0). If SEL = 0 the DPTR0 is selected otherwise DPTR1.

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 82h          | R/W |       |       |       |       |       |       |       |       |





| DPL0                        |                   |              |              |              |              |              |              |              |              |
|-----------------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Reset                       |                   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
|                             |                   |              |              |              |              |              |              |              |              |
| Address/Name                | R/W               | Bit 7        | Bit 6        | Bit 5        | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0        |
| 83h<br>DPH0                 | R/W               |              |              |              |              |              |              |              |              |
| Reset                       |                   | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
|                             |                   |              |              |              |              |              |              |              |              |
| Address/Name                | R/W               | Bit 7        | Bit 6        | Bit 5        | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0        |
| Address/Name<br>84h<br>DPL1 | <b>R/W</b><br>R/W | Bit 7        | Bit 6        | Bit 5        | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0        |
| 84h                         | _                 | <b>Bit 7</b> | <b>Bit 6</b> | <b>Bit 5</b> | <b>Bit 4</b> | <b>Bit 3</b> | <b>Bit 2</b> | <b>Bit 1</b> | <b>Bit 0</b> |
| 84h<br>DPL1                 | _                 |              |              |              |              |              |              |              |              |
| 84h<br>DPL1                 | _                 |              |              |              |              |              |              |              |              |

0 Data Pointer 1 Register DPTR1

0

0

0

n

n

0

0

| Address/Name | R/W | Bit 7 | Bit 6        | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|--------------|--------|-------|-------|-------|-------|-------|
| 86h<br>DPS   | R/W | ID1   | ID0          | TSL    | AU1   | AU0   | -     | -     | SEL   |
| Reset        |     | 0     | 0            | 0      | 0     | 0     | 0     | 0     | 0     |
|              |     | Data  | a first a se | Oalast |       |       |       |       |       |

Data Pointers Select Register

ID[1:0] - Increment/decrement function select. See table below.

DPH1 Reset

TSL - Toggle select enable. When set, this bit allows the following DPTR related instruction to toggle the SEL bit following execution of the instruction:

MOVC A, @A+DPTR INC DPTR MOVX @DPTR, A MOVX A, @DPTR MOV DPTR, #data16

When TSL=0, DPTR related instructions do not affect state of SEL bit.

AU -When set to '1' performs automatic increment(0)/ decrement(1) of selected DPTR according to IDx bits, after each MOVX @DPTR, MOVC @DPTR instructions

SEL - Select active data pointer - see table below

- Unimplemented bit. Read as 0 or 1.

| ID1 | ID0 | SEL=1     | SEL=0    |
|-----|-----|-----------|----------|
| 0   | 0   | INC DPTR1 | INC DPTR |
| 0   | 1   | INC DPTR1 | DEC DPTR |
| 1   | 0   | DEC DPTR1 | INC DPTR |
| 1   | 1   | DEC DPTR1 | DEC DPTR |

#### Table DPTR0, DPTR1 operations

Selected data pointer register in used in the following instructions:

MOVX @DPTR,A MOVX A,@DPTR MOVC A, A+DPTR JMP @A+DPTR



INC DPTR MOV DPTR,#data16

#### 10.2.8 RF Registers, RF FIFO and AES FIFO

RF registers are RF radio control registers and located in 0x0800 ~ 0x08ff. Please refer the section 9.2 and the related function setting in the datasheet. A8105 has 384 Bytes FIFO located from 0x0900 to 0x0A7F. There are 128 bytes FIFO from 0x0900 ~ 0x097F for data transmitting. There are 128 bytes FIFO from 0x0980 ~ 0x09FF for data receiving. There are 128 bytes FIFO from 0x0400 ~ 0x0A7F for AES/CCM\* operation.

#### **10.3 Instruction set**

A8105 use a high performance, pipeline 8051 core and it is filly compatible with the standard MCS-51<sup>™</sup> instruction set. Standard 8051 development tools can used to develop software for A8105. All A8105 instruction sets are the binary and functional equivalent of the MCS-51<sup>™</sup>. However, instruct timing is different with the standard 8051. All instruction timings are specified in the terms of clock cycles as shown in the table 10.1

| Mnemonic         | Description                                     | Code      | Bytes | Cycles |
|------------------|-------------------------------------------------|-----------|-------|--------|
| ACALL addr11     | Absolute subroutine call                        | 0x11-0xF1 | 2     | 4      |
| ADD A,#data      | Add immediate data to accumulator               | 0x24      | 2     | 2      |
| ADD A,@Ri        | Add indirect RAM to accumulator                 | 0x26-0x27 | 1     | 2      |
| ADD A,direct     | Add direct byte to accumulator                  | 0x25      | 2     | 2      |
| ADD A,Rn         | Add register to accumulator                     | 0x28-0x2F | 1     | 1      |
| ADDC A,#data     | Add immediate data to A with carry flag         | 0x34      | 2     | 2      |
| ADDC A,@Ri       | Add indirect RAM to A with carry flag           | 0x36-0x37 | 1     | 2      |
| ADDC A,direct    | Add direct byte to A with carry flag            | 0x35      | 2     | 2      |
| ADDC A,Rn        | Add register to accumulator with carry flag     | 0x38-0x3F | 1     | 1      |
| AJMP addr11      | Absolute jump                                   | 0x01-0xE1 | 2     | 3      |
| ANL C,/bit       | AND complement of direct bit to carry           | 0xB0      | 2     | 2      |
| ANL A,#data      | AND immediate data to accumulator               | 0x54      | 2     | 2      |
| ANL A,@Ri        | AND indirect RAM to accumulator                 | 0x56-0x57 | 1     | 2      |
| ANL A,direct     | AND direct byte to accumulator                  | 0x55      | 2     | 2      |
| ANL A,Rn         | AND register to accumulator                     | 0x58-0x5F | 1     | 1      |
| ANL C,bit        | AND direct bit to carry flag                    | 0x82      | 2     | 2      |
| ANL direct,#data | AND immediate data to direct byte               | 0x53      | 3     | 3      |
| ANL direct,A     | AND accumulator to direct byte                  | 0x52      | 2     | 3      |
| CJNE @Ri,#data   | Compare immediate to ind. and jump if not equal | 0xB6-0xB7 | 3     | 5      |
| CJNE A,#datare   | Compare immediate to A and jump if not equal    | 0xB4      | 3     | 4      |
| CJNE A,directre  | Compare direct byte to A and jump if not equal  | 0xB5      | 3     | 5      |
| CJNE Rn,#datar   | Compare immediate to reg. and jump if not equal | 0xB8-0xBF | 3     | 4      |
| CLR A            | Clear accumulator                               | 0xE4      | 1     | 1      |
| CLR bit          | Clear direct bit                                | 0xC2      | 2     | 3      |
| CLR C            | Clear carry flag                                | 0xC3      | 1     | 1      |
| CPL A            | Complement accumulator                          | 0xF4      | 1     | 1      |
|                  |                                                 |           |       |        |

Table 10.1 Instruction set sorted by alphabet



| CPL bit          | Complement direct bit                      | 0xB2      | 2 | 3 |  |
|------------------|--------------------------------------------|-----------|---|---|--|
| CPL C            | Complement carry flag                      | 0xB3      | 1 | 1 |  |
| DA A             | Decimal adjust accumulator                 | 0xD4      | 1 | 3 |  |
| DEC @Ri          | Decrement indirect RAM                     | 0x16-0x17 | 2 | 3 |  |
| DEC A            | Decrement accumulator                      | 0x14      | 1 | 1 |  |
| DEC direct       | Decrement direct byte                      | 0x15      | 1 | 3 |  |
| DEC Rn           | Decrement register                         | 0x18-0x1F | 1 | 2 |  |
| DIV A,B          | Divide A by B                              | 0x84      | 1 | 6 |  |
| DJNZ direct,rel  | Decrement direct byte and jump if not zero | 0xD5      | 3 | 5 |  |
| DJNZ Rn,rel      | Decrement register and jump if not zero    | 0xD8-0xDF | 2 | 4 |  |
| INC @Ri          | Increment indirect RAM                     | 0x06-0x07 | 1 | 3 |  |
| INC A            | Increment accumulator                      | 0x04      | 1 | 1 |  |
| INC direct       | Increment directbyte                       | 0x05      | 2 | 3 |  |
| INC Rn           | Increment register                         | 0x08-0x0F | 1 | 2 |  |
| INC DPTR         | Increment data pointer                     | 0xA3      | 1 | 1 |  |
| JB bit,rel       | Jump if direct bit is set                  | 0x20      | 3 | 5 |  |
| JBC bit,directre | Jump if direct bit is set and clear bit    | 0x10      | 3 | 5 |  |
| JC rel           | Jump if carry flag is set                  | 0x40      | 2 | 3 |  |
| JMP@A+DPTR       | Jump indirect relative to the DPTR         | 0x73      | 1 | 5 |  |
| JNB bit,rel      | Jumpifdirectbitisnotset                    | 0x30      | 3 | 5 |  |
| JNC              | Jump if carry flag is not set              | 0x50      | 2 | 3 |  |
| JNZ rel          | Jump if accumulator is not zero            | 0x70      | 2 | 4 |  |
| JZ rel           | Jump if accumulator is zero                | 0x60      | 2 | 4 |  |
| LCALL addr16     | Long subroutine call                       | 0x12      | 3 | 4 |  |
| LJMP addr16      | Long jump                                  | 0x02      | 3 | 4 |  |
| MOV A,@Ri        | Move indirect RAM to accumulator           | 0xE6-0xE7 | 1 | 2 |  |
| MOV bit,C        | Move carry flag to direct bit              | 0x92      | 2 | 3 |  |
| MOV @Ri,#data    | Move immediate data to indirect RAM        | 0x76-0x77 | 2 | 2 |  |
| MOV @Ri,A        | Move accumulator to indirect RAM           | 0xF6-0xF7 | 1 | 2 |  |
| MOV @Ri,direct   | Move direct byte to indirect RAM           | 0xA6-0xA7 | 2 | 3 |  |
| MOV A,#data      | Move immediate data to accumulator         | 0x74      | 2 | 2 |  |
| MOV A,direct     | Move direct byte to accumulator            | 0xE5      | 2 | 2 |  |
| MOV A,Rn         | Move register to accumulator               | 0xE8-0xEF | 1 | 1 |  |
| MOV C,bit        | Move direct bit to carry flag              | 0xA2      | 2 | 2 |  |
| MOV direct,#data | Move immediate data to direct byte         | 0x75      | 3 | 3 |  |
| MOV direct,@Ri   | Move indirect RAM to direct byte           | 0x86-0x87 | 2 | 3 |  |
| MOV direct,A     | Move accumulator to direct byte            | 0xF5      | 2 | 2 |  |
| MOV direct,Rn    | Move register to direct byte               | 0x88-0x8F | 2 | 2 |  |



| MOV direct1,direct2 | Move direct byte to direct byte                | 0x85      | 3 | 3  |
|---------------------|------------------------------------------------|-----------|---|----|
| MOV DPTR,#data16    | Load 16-bit constant in to active DPTR         | 0x90      | 3 | 3  |
| MOV Rn,#data        | Move immediate data to register                | 0x78-0x7F | 2 | 2  |
| MOV Rn,A            | Move accumulator to register                   | 0xF8-0xFF | 1 | 1  |
| MOV Rn,direct       | Move direct byte to register                   | 0xA8-0xAF | 2 | 3  |
| MOVC A,@A+DPTR      | Move code byte relative to DPTR to accumulator | 0x93      | 1 | 5  |
| MOVC A,@A+PC        | Move code byte relative to PC to accumulator   | 0x83      | 1 | 4  |
| MOVX @DPTR,A        | Move A to external SRAM (16-bitaddress)        | 0xF0      | 1 | 1  |
| MOVX @Ri,A          | Move A to external RAM (8-bitaddress)          | 0xF2-0xF3 | 1 | 1* |
| MOVX A,@DPTR        | Move external RAM (16-bitaddress) to A         | 0xE0      | 1 | 2* |
| MOVX A,@Ri          | Move external RAM (8-bitaddress) to A          | 0xE2-0xE3 | 1 | 2* |
| MUL A,B             | Multiply A and B                               | 0xA4      | 1 | 2  |
| NOP                 | No operation                                   | 0x00      | 1 | 1  |
| ORL direct,A        | OR accumulator to direct byte                  | 0x42      | 2 | 3  |
| ORL A,#data         | OR immediate data to accumulator               | 0x44      | 2 | 2  |
| ORL A,@Ri           | OR indirect RAM to accumulator                 | 0x46-0x47 | 1 | 2  |
| ORL A,direct        | OR direct byte to accumulator                  | 0x45      | 2 | 2  |
| ORL A,Rn            | OR register to accumulator                     | 0x48-0x4F | 1 | 1  |
| ORL C,/bit          | OR complement of direct bit to carry           | 0xA0      | 2 | 2  |
| ORL C,bit           | OR direct bit to carry flag                    | 0x72      | 2 | 2  |
| ORL direct,#data    | OR immediate data to direct byte               | 0x43      | 3 | 3  |
| POP direct          | Pop_direct_byte_from internal ram stack        | 0xD0      | 2 | 2  |
| PUSH direct         | Push direct byte on to internal ram stack      | 0xC0      | 2 | 3  |
| RET                 | Return from subroutine                         | 0x22      | 1 | 4  |
| RETI                | Return from interrupt                          | 0x32      | 1 | 4  |
| RL A                | Rotate accumulator left                        | 0x23      | 1 | 1  |
| RLC A               | Rotate accumulator left through carry          | 0x33      | 1 | 1  |
| RR A                | Rotate accumulator right                       | 0x03      | 1 | 1  |
| RRC A               | Rotate accumulator right through carry         | 0x13      | 1 | 1  |
| SETB C              | Set carry flag                                 | 0xD3      | 1 | 1  |
| SETB bit            | Set direct bit                                 | 0xD2      | 2 | 3  |
| SJMP rel            | Short jump (relative address)                  | 0x80      | 2 | 3  |
| SUBB A,@Ri          | Subtract indirect RAM from A with borrow       | 0x96-0x97 | 1 | 2  |
| SUBB A,direct       | Subtract direct byte from A with borrow        | 0x95      | 2 | 2  |
| SUBB A,#data        | Subtract immediate data from A with borrow     | 0x94      | 2 | 2  |
| SUBB A,Rn           | Subtract register from A with borrow           | 0x98-0x9F | 1 | 1  |
| SWAP A              | Swap nibbles within the accumulator            | 0xC4      | 1 | 1  |
| XCH A,@Ri           | Exchange indirect RAM with accumulator         | 0xC6-0xC7 | 1 | 3  |

**AMICCOM Electronics Corporation** 



| XCH A,direct     | Exchange direct byte with accumulator         | 0xC5      | 2 | 3 |  |
|------------------|-----------------------------------------------|-----------|---|---|--|
| XCH A,Rn         | Exchange register with accumulator            | 0xC8-0xCF | 1 | 2 |  |
| XCHD A,@Ri       | Exchange low-order nibble indirect RAM with A | 0xD6-0xD7 | 1 | 3 |  |
| XRL direct,#data | ExclusiveOR immediate data to direct byte     | 0x63      | 3 | 3 |  |
| XRL A,#data      | ExclusiveOR immediate data to accumulator     | 0x64      | 2 | 2 |  |
| XRL A,@Ri        | ExclusiveOR indirect RAM to accumulator       | 0x66-0x67 | 1 | 2 |  |
| XRL A,direct     | ExclusiveOR direct byte to accumulator        | 0x65      | 2 | 2 |  |
| XRL A,Rn         | ExclusiveOR register to accumulator           | 0x68-0x6F | 1 | 1 |  |
| XRL direct,A     | ExclusiveOR accumulator to direct byte        | 0x62      | 2 | 3 |  |

#### 10.4 Interrupt handler

This section describes 8051 external interrupts and their functionality. For peripheral related interrupts, please refer to an appropriate peripheral section. The external interrupts symbol is shown in figure above. And the pins functionality is described in the following table. All pins are one directional. There are no three-state output pins and internal signals.

| Name        | ACTIVE      | TYPE  | DESCRIPTION               |
|-------------|-------------|-------|---------------------------|
| int0(P3.2)  | low/falling | Input | External interrupt 0 line |
| int1(P3.3)  | low/falling | Input | External interrupt 1 line |
| int2(P0.7)  | low         | Input | External interrupt 2 line |
| int3*(P1.2) | low         | Input | External interrupt 3 line |
| int4*(P1.3) | low         | Input | External interrupt 4 line |
| RF_int      | failing     |       |                           |
| Key_int     | failing     |       |                           |
| <b>T</b> 1  |             |       |                           |

Table 10.2 External interrupts pins description

Note1 : Number of external interrupt sources depends on core configuration. It can be adjusted upon request. The int0 & int1 sources are always available. Please check your configuration.

Note2 : \*pin functionality depends on compare / capture unit.

### 10.4.1 FUNCTIONALITY

All 8051 IP cores have implemented two levels interrupt priority control. Each external interrupt can be in high or low level priority group by setting or clearing a bit in the IP(0xB8), EIP(0xF8), and DEVICR(0xCF) registers. External interrupt pins are activated at low level or by a falling edge. Interrupt requests are sampled each system clock at the rising edge of CLK.

| Interrupt flag | Function                    | Active level/edge | Flag resets | Vector | Natural priority |
|----------------|-----------------------------|-------------------|-------------|--------|------------------|
| IE0            | Device pin INT0             | Low/falling       | Hardware    | 0x03   | 1                |
| TF0            | Internal, Timer 0           | -                 | Hardware    | 0x0B   | 2                |
| IE1            | Device pin INT1             | Low/falling       | Hardware    | 0x13   | 3                |
| TF1            | Internal, Timer 1           | -                 | Hardware    | 0x1B   | 4                |
| TI0 & RI0      | Interrupt, UART0            | -                 | Software    | 0x23   | 5                |
| TF2            | Interrupt, Timer 2          | -                 | Software    | 0x2B   | 6                |
| TI1 & RI1      | Interrupt, UART1            | -                 | Software    | 0x33   | 7                |
| INT2F          | Device pin INT2             | Low               | Hardware    | 0x3B   | 8                |
| INT3F          | Device pin INT3             | Low               | Hardware    | 0x43   | 9                |
| INT4F          | Device pin INT4             | Low               | Hardware    | 0x4B   | 10               |
| RFINT          | Interrupt, RF               | -                 | Software    | 0x53   | 11               |
| KEYINT         | Interrupt, Key              | -                 | Software    | 0x5B   | 12               |
| WDIF           | Internal, Watchdog          | -                 | Software    | 0x63   | 13               |
| I2CMIF         | Internal, I2C MASTER MODULE | -                 | Software    | 0x6B   | 14               |
| I2CSIF         | Internal, DI2CS/            | -                 | Software    | 0x73   | 15               |
| SPIIF          | Internal, SPI               |                   |             |        |                  |
| MACIF          | Internal DMAC               | -                 | Hardware    | 0x7B   | 16               |
| USBIF          | Internal USB2               | -                 | Hardware    | 0x83   | 17               |



Table10.3

8051 interrupts summary

#### 1- This is a default location when IRQ\_INTERVAL = 8, in other case is equal to (IRQ\_INTERVAL\* n) + 3, when n = (natural Priority - 1)

Each interrupt vector can be individually enabled or disabled by setting or clearing a corresponding bit in the IE(0xA8), EIE(0xE8), DEVICR(0xCF). The IE contains global interrupt system disable(0) / enable(1) bit called EA.

IE register

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| A8h<br>IE    | R/W | EA    | -     | ET2   | ES0   | ET1   | EX1   | ET0   | EX0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

- EA : Enable global interrupts
- EX0 : Enable INT0 interrupts

(0xA8)

- ET0 : Enable Timer 0 interrupts
- EX1 : Enable INT1 interrupts
- ET1 : Enable Timer 1 interrupts
- ES0 : Enable UART0 interrupts
- ET2 : Enable Timer 2 interrupts

All of bits that generate interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software. The exceptions of this rule are the request flags IE0 and IE1. If the external interrupts 0 or 1 are programmed to be level activated, IE0 and IE1 are controlled by the external source via pin INT0 and INT1, respectively. Thus, writing a one to these bits will not set the request flag IE0 and/or IE1. The same exception is related to INT2F, INT3F, INT4F, INT5F, and INT6F – external interrupts number 2, 3, 4, 5, 6.

| IP register | IP | reaister |  |
|-------------|----|----------|--|
|-------------|----|----------|--|

| (0xE | 38)          |     |       |       |       |       |       |       |       |       |
|------|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|      | Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|      | B8h<br>IP    | R/W |       | -     | PT2   | PS0   | PT1   | PX1   | PT0   | PX0   |
|      | Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|      |              |     |       |       |       |       |       |       |       |       |

- PX0 : INT0 priority level control (at 1-high-level)
- PT0 : Timer 0 priority level control (at 1-high-level)
- PX1 : INT1 priority level control (at 1-high-level)
- PT1 : Timer 1 priority level control (at 1-high-level)
- PS0 : UART0 priority level control (at 1-high-level)
- PT2 : Timer 2 priority level control (at 1-high-level)

TCON register (0x88)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 88h<br>TCON  | R/W | TF1   | TR1   | TF0   | TR0   | IE1   | IT1   | IE0   | IT0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

IT0 : INT0 level (at 0) / edge (at 1) sensitivity

- IT1 : INT1 level (at 0) / edge (at 1) sensitivity
- IE0 : INT0 interrupt flag
  - Cleared by hardware when processor branches to interrupt routine
- IE1 : INT1 interrupt flag
- Cleared by hardware when processor branches to interrupt routine
- TF0 : Timer 0 interrupt (overflow) flag



- Cleared by hardware when processor branches to interrupt routine
- TF1 : Timer 1 interrupt (overflow) flag
  - Cleared by hardware when processor branches to interrupt routine

SCON0 register

| (0x98)       |     |       |       |       |       |       |       |       |       |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 98h<br>SCON0 | R/W | SM00  | SM01  | SM02  | REN0  | TB08  | RB08  | TI0   | RI0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

- RI0 : UART0 receiver interrupt flag
- TI0 : UART0 transmitter interrupt flag

SCON1 register

| (0xC0)       |     |       |       |       |       |       |       |       |       |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| C0h<br>SCON1 | R/W | SM10  | SM11  | SM12  | REN1  | TB18  | RB18  | TI1   | RI1   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

RI1 : UART1 receiver interrupt flag

TI1 : UART1 transmitter interrupt flag

EIE register

| (0xE8)       |     |               |       |       |         |        |       |       |       |  |  |
|--------------|-----|---------------|-------|-------|---------|--------|-------|-------|-------|--|--|
| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4   | Bit 3  | Bit 2 | Bit 1 | Bit 0 |  |  |
| E8h<br>EIE   | R/W | EI2CS<br>ESPI | EI2CM | EWDI  | EKEYINT | ERFINT | EINT4 | EINT3 | EINT2 |  |  |
| Reset        |     | 0             | 0     | 0     | 0       | 0      | 0     | 0     | 0     |  |  |

- EINT2 : Enable INT2 interrupts
- EINT3 : Enable INT3
- EINT4 : Enable INT4
- ERFINT : Enable RF INT
- EKEYINT : Enable KEY INT
- EWDI : Enable Watchdog interrupts
- EI2CM : Enable DI2CM interrupts
- EI2CS : Enable DI2CS interrupts
- ESPI : Enable DSPI interrupts

| EIP register (0xF8)<br>Address/Name R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit |              |     |               |       |      |         |        |       |       |       |  |  |  |
|---------------------------------------------------------------------------------------|--------------|-----|---------------|-------|------|---------|--------|-------|-------|-------|--|--|--|
|                                                                                       | Address/Name | -   |               |       |      |         | Bit 3  |       |       | Bit 0 |  |  |  |
|                                                                                       | F8h<br>EIP   | R/W | PI2CS<br>PSPI | PI2CM | PWDI | PKEYINT | PRFINT | PINT4 | PINT3 | PINT2 |  |  |  |
|                                                                                       | Reset        |     | 0             | 0     | 0    | 0       | 0      | 0     | 0     | 0     |  |  |  |

- PINT2 : INT2 priority level control (at 1-high-level)
- PINT3 : INT3/Compare 0 priority level control (at 1-high-level)
- PINT4 : INT4/Compare 1 priority level control (at 1-high-level)
- PRFINT : RFINT priority level control (at 1-high-level)
- PKEYINT : KEYINT priority level control (at 1-high-level)
- PWDI : Watchdog priority level control (at 1-high-level)
- PI2CM : DI2CM priority level control (at 1-high-level)
- PI2CS : DI2CS priority level control (at 1-high-level)
- PSPI : DSPI priority level control (at 1-high-level)

| EIF register | (0x91)       |     |       |       |       |       |       |       |       |       |
|--------------|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|              | Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |



| 91h<br>EIF | R/W | I2CSF<br>SPIF | I2CMF | - | INT6F | INT5F | INT4F | INT3F | INT2F |
|------------|-----|---------------|-------|---|-------|-------|-------|-------|-------|
| Reset      |     | 0             | 0     | 0 | 0     | 0     | 0     | 0     | 0     |

INT2F : INT2 interrupt flag

Should be cleared by external hardware when processor branches to interrupt routine. This bit is a copy of INT2 pin updated every CLK period. It cannot be set by software.

INT3F\* : INT3/Compare 0 interrupt flag

Should be cleared by external hardware when processor branches to interrupt routine. This bit is a copy of INT3 pin updated every CLK period, else must be cleared by software writing 0x02 when Compare 0 enabled CCEN[1:0]=10.1t cannot be set by software.

#### INT4F\* : INT4/Compare 1 interrupt flag

Should be cleared by external hardware when processor branches to interrupt routine. This bit is a copy of INT4 pin updated every CLK period, else must be cleared by software writing 0x04 when Compare 0 enabled CCEN[3:2]=10

It cannot be set by software.

#### RFINT : RFINT interrupt flag

Must be cleared by software writing 0x08 when controlled by INT5 pin, else must be cleared by software writing 0x08 when Compare2 is enabled CCEN[5:4]=10. It cannot be set by software.

#### KEYINT : KEYINT interrupt flag

Must be cleared by software writing 0x10 when controlled by INT6 pin, else must be cleared by software writing 0x10 when Compare3 is enabled CCEN[7:6]=10. It cannot be set by software.

I2CMIF : DI2CM interrupt flag. Must be cleared by software writing 0x40. It cannot be set by software

I2CSIF : DI2CS interrupt flag

#### SPIIF : DSPI interrupt flag

Software should determine the source of interrupt by checking both modules' interrupt related bits. Must be cleared by software writing 0x80. It cannot be set by software.

Note1: \* flag can be set by Compare/Capture unit channel when enabled in CCEN register

Note2: A peripheral related bit is available if this peripheral device is included in the system. Can be modified upon request. Please check your configuration.

#### SPIIF : DSPI interrupt flag

Software should determine the source of interrupt by checking both modules' interrupt related bits. Must be cleared by software writing 0x80. It cannot be set by software.

|            |             |       |          |     |     | - U -               |     |           |
|------------|-------------|-------|----------|-----|-----|---------------------|-----|-----------|
|            |             |       | Internal |     | RAM |                     |     |           |
|            | CPU speed   | 16MHz | RC       | RTC |     | Back to Normal      | LVR | RF        |
| Normal     | 16MHz       | V     | V        | V   | V   | Х                   | V   | ALL       |
|            | 8/4/2/1 MHz |       |          |     | V   | Interrupt / mode    |     |           |
| PMM        | IRC/RTC     | V     | V        | V   |     | switch              | V   | ALL       |
|            |             |       |          |     | V   | H/W reset / wakeup  |     |           |
| Idle       |             |       |          |     |     | key / Interrupt     |     |           |
| (PM1)      | X           | Х     | V        | V   |     | Key / Sleep timer   | V   | WOR/Sleep |
| Sleep      |             |       |          |     | V   | H/W reset / wakeup  |     |           |
| (PM2)      | X           | Х     | Х        | Х   |     | key / Interrupt KEY | V*  | Sleep     |
| Deep Sleep |             |       |          |     | ?   | Reset               |     |           |
| (PM3)      | Х           | Х     | Х        | Х   |     | Key Reset           | Х   | Sleep     |

Table 10.4 Power manager

Key interrupt

1. P0 / P1 ==> 1 個 wakeup bit, control 2 個 pin.

2. P3 ==> 1 個 wakeup bit, control 1 個 pin.

### 10.5 Reset Circuit

Reset Flag POR Flag

LVS



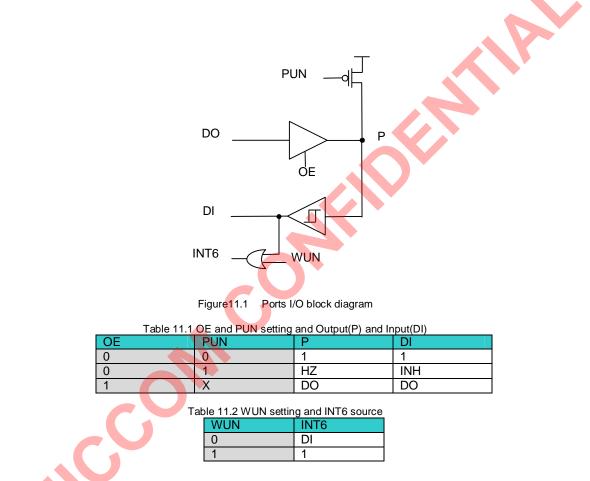
#### LVR

TX flag RX flag

RSFLAG

(0xBA)

| AG                                                                                     | (0xBA):                          |         |       |       |       |       |       |       |         |       |  |
|----------------------------------------------------------------------------------------|----------------------------------|---------|-------|-------|-------|-------|-------|-------|---------|-------|--|
|                                                                                        | Address/Name                     | R/W     | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1   | Bit 0 |  |
|                                                                                        | BAh<br>RSFLAG                    | R       | -     | -     | -     | -     | -     | BODF  | RESETNF | PORF  |  |
|                                                                                        | Reset                            |         | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0     |  |
| = 0: No Pov<br>TNF (resetu<br>= 1: Occurr<br>= 0: No Res<br>(Low voltag<br>= 1: Occurr | ed Power-on Rese<br>wer-on Reset | n reset |       |       |       |       |       |       |         |       |  |


PORF (power-on reset flag)

- = 1: Occurred Power-on Reset
- = 0: No Power-on Reset
- **RESETNF** (resetn flag)
  - = 1: Occurred ResetN reset
  - = 0: No ResetN resetno resetn reset
- BOD (Low voltage detect) flag
  - = 1: Occurred Low Voltage Reset
  - = 0: No Low Voltage reset



### 11. I/O Ports

A8105 has 24 Digital I/O Pins. There are separated to 3 Ports and each of the Port pin can be defined as general-purpose I/O (GPIO) or peripheral I/O signals connected to the timers, UART, I2C and SPI functions. Thus, each pin can also be used to wake A8105 up from sleep mode. User can select each pin function by setting register. Each port has itself port register like P0 (0x80), P1 (0x90) and P3 (0xB0) that are both byte addressable and bit addressable. When reading, the logic levels of the Port's input pins are returned. Each port has three registers to setting Pull-up (PU), Output-enable (OE) and Wake-up enable (WUE). As shown the bellow block diagram, Fig. 11.1. Unused I/O pins should have a defined level and not be left floating. One way to do this is to leave the pin unconnected and configure the pin as a general-purpose I/O input with pull-up resistor.



### **11.2 FUNCTIONALITY**

It has three 8-bit full bi-directional ports, P0, P1 and P3. Each port bit can be individually accessed by bit addressable instructions.

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 80h<br>P0    | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| Port 0 | register |
|--------|----------|
|--------|----------|

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 90h<br>P1    | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Port 1 register



| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| B0h<br>P3    | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Port 3 register

Read and write accesses to the I/O port are performed via their corresponding SFRs P0(0x80), P1(0x90), and P3(0xB0). Some port-reading instructions read the data register and others read the port's pin. The "Read-Modify-Write" instructions are directed to the data registers and are shown below. All the other instructions used to read a port exclusively read the port's pin.

| Instruction | Function description           |   |
|-------------|--------------------------------|---|
| ANL         | Logic AND                      |   |
| ORL         | Logic OR                       |   |
| XRL         | Logic eXclusive OR             |   |
| JBC         | Jump if bit is set and clear   |   |
| CPL         | Complement bit                 |   |
| INC, DEC    | Increment, decrement byte      |   |
| DJNZ        | Decrement and jump if not zero | V |
| MOV Px.y, C | Move carry bit to y of port x  |   |
| CLR Px.y    | Clear bit y of port x          |   |
| SETB Px.y   | Set bit y of port x            |   |
| Table11.2   | Read-modify-write instructions |   |

According the Table 11.1, all Port pins can be configured as Output, Input with pull-up resistor( around 100 Kohm) or Input. Please refer the following truth table to know every function setting. When OE=1, this pin is configured as Output. Otherwise OE=0, this pin is configured as Input. User can set PU =1 or 0 depending on application. When OE=1, PU=0 is recommended for saving power.

| OE | PU | Р       | DI    |
|----|----|---------|-------|
| 1  | Х  | DO      | DO    |
| 0  | 1  | Pull-up | Р     |
| 0  | 0  | HZ      | Input |

All Port pins can wake A8105 up when WUEN=1 and configured GPIO. All Port pins' WEU signals connect one AND gate to INT2. It means pin wake up function needs INT2 ISR to take care this interrupt.

| C                                           |                   |              | <b>WUEN</b><br>1<br>0 | N WUN<br>1<br>DI | DI           |              |              |              |                |  |
|---------------------------------------------|-------------------|--------------|-----------------------|------------------|--------------|--------------|--------------|--------------|----------------|--|
| Address/Name                                | R/W               | Bit 7        | Bit 6                 | Bit 5            | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0          |  |
| B2h<br>P0PU                                 | R/W               |              |                       |                  |              |              |              |              |                |  |
| Reset                                       |                   | 0            | 0                     | 0                | 0            | 0            | 0            | 0            | 0              |  |
| Port 0 Pull Up Register                     |                   |              |                       |                  |              |              |              |              |                |  |
|                                             | -                 |              |                       |                  |              |              |              |              |                |  |
| Address/Name                                | R/W               | Bit 7        | Bit 6                 | Bit 5            | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0          |  |
| Address/Name<br>B3h<br>P0OE                 | <b>R/W</b><br>R/W | Bit 7        | Bit 6                 | Bit 5            | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0          |  |
| B3h                                         |                   | <b>Bit 7</b> | <b>Bit 6</b>          | <b>Bit 5</b>     | <b>Bit 4</b> | <b>Bit 3</b> | <b>Bit 2</b> | <b>Bit 1</b> | <b>Bit 0</b> 0 |  |
| B3h<br>P0OE                                 |                   | 0            |                       | 0                | 0            | 0            |              |              |                |  |
| B3h<br>P0OE                                 |                   | 0            | 0                     | 0                | 0            | 0            |              |              |                |  |
| B3h<br>P0OE<br>Reset                        | R/W               | 0<br>Port 0  | 0<br>Output           | 0<br>Enable      | 0<br>e Regis | 0<br>ter     | 0            | 0            | 0              |  |
| B3h<br>P0OE<br>Reset<br>Address/Name<br>B4h | R/W               | 0<br>Port 0  | 0<br>Output           | 0<br>Enable      | 0<br>e Regis | 0<br>ter     | 0            | 0            | 0              |  |

Port 0 Wake Up Enable Register



| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| B5h<br>P1PU  | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Port 1 Pull Up Register

| Address/Name | R/W | Bit 7  | Bit 6  | Bit 5  | Bit 4   | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
|--------------|-----|--------|--------|--------|---------|-------|-------|-------|-------|--|
| B6h<br>P1OE  | R/W |        |        |        |         |       |       |       |       |  |
| Reset        |     | 0      | 0      | 0      | 0       | 0     | 0     | 0     | 0     |  |
|              |     | Port 1 | Output | Enable | e Regis | ter   |       |       |       |  |
|              |     |        |        |        |         |       |       |       |       |  |

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4   | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|---------|-------|-------|-------|-------|
| B7h<br>P1WUE | R/W |       |       |       |         |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0       | 0     | 0     | 0     | 0     |
|              |     |       |       |       | la Dagi | otor  |       |       |       |

Port 1 Wake Up Enable Register

| Address/Name            | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| AAh<br>P3PU             | R/W |       |       |       |       |       |       |       |       |
| Reset                   |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Port 2Pull Lip Register |     |       |       |       |       |       |       |       |       |

Port 3Pull Up Register

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ABh<br>P3OE  | R/W |       |       |       |       |       |       |       |       |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Port 3 Output Enable Register

| Address/Name                   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ACh<br>P3WUE                   | R/W |       |       |       |       |       |       |       |       |
| Reset                          |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Dert 2 Weke Up Enghle Derister |     |       |       |       |       |       |       |       |       |

Port 3 Wake Up Enable Register

**IOSEL** Register (0xBB)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1  | Bit 0   |
|--------------|-----|-------|-------|--------|--------|-------|-------|--------|---------|
| BBh<br>IOSEL | R/W | -     | -     | ADCIOS | RTCIOS | BBIOS | -     | I2CIOS | URTOIOS |
| Reset        |     | 0     | 0     | 0      | 0      | 0     | 0     | 0      | 0       |

#### URT0IOS (UART0 I/O select)

= 1: The pad is selected for UART0 mode0 (open drain I/O)

= 0: The pad is normal I/O

I2CIOS (I2C I/O select)

- = 1: The pad is selected for I2C (open drain I/O)
- = 0: The pad is normal I/O

BBIOS (Base band I/O select)

= 1: Output

= 0: Input

RTCIOS (Real-time clock I/O select)

= 1: The pad is for RTC clock

- = 0: The pad is normal I/O
- ADCIOS (ADC I/O select)

= 1: The pad is for ADC analog input



= 0: The pad is normal I/O MICCOM



### 12 Timer 0 & 1 & 2

A8105 contains three 16-bit timer/counters, Timer 0, Timer 1 and Timer 2. Timer 0 and Timer 1 in the "timer mode", timer registers are incremented every 4/12/CLK periods depends on CKCON (0x8E) setting, when appropriate timer is enabled. In the "counter mode" the timer registers are incremented every falling transition on theirs corresponding input pins: T0 or T1. The input pins are sampled every CLK period.

The Timer 2 is one of the most powerful peripheral units of the core. It can be used for all kinds of digital signal generation and event capturing like pulse generation, pulse width modulation, pulse width measuring etc.

### 12.1 Timer 0 & 1 PINS DESCRIPTION

The pins functionality is described in the following table. All pins are one directional.

| PIN         | ACTIVE  | TYPE  | DESCRIPTION                     |
|-------------|---------|-------|---------------------------------|
| T0(P3.4)    | Falling | Input | Timer 0 clock line              |
| GATE0(P3.2) | High    | Input | Timer 0 clock line gate control |
| T1(P3.5)    | Falling | Input | Tiner 1 clock line              |
| GATE1(P3.3) | High    | Input | Timer 1clock line gate control  |

Table12.1 Timer 0, 1 pins description

### 12.2 Timer 0 & 1 FUNCTIONALITY

#### 12.2.1 OVERVIEW

Timer 0 and Timer 1 are fully compatible with the standard 8051 timers. Each timer consists of two 8-bit registers TH0 (0x8C), TL0 (0x8A), TH1 (0x8D), TL1 (0x8B). Timers 0, 1 work in the same four modes. The modes are described below.

| M1 | M0 | Mode | Function description                                                                                    |
|----|----|------|---------------------------------------------------------------------------------------------------------|
| 0  | 0  | 0    | THx operates as 8-bit timer/counter with a divide by 32 prescaler served by lower 5-bit of TLx.         |
| 0  | 1  | 1    | 16-bit timer/counter. THx and TLx are cascaded.                                                         |
| 1  | 0  | 2    | TLx operates as 8-bit timer/counter with 8-bit auto-reload by THx.                                      |
| 1  | 1  | 3    | TL0 is configured as 8-bit timer/counter controlled by the standard Timer 0 bits. TH0 is an 8-bit timer |
|    |    |      | controlled by the Timer 1 controls bits. Timer 1 holds its count.                                       |

Table12.2 Timer 0 and 1 modes

#### 12.2.2 Timer 0 & 1 Registers

TMOD register (0x89)

| Address/Name | R/W | Bit 7 | Bit 6    | Bit 5     | Bit 4 | Bit 3 | Bit 2   | Bit 1     | Bit 0 |
|--------------|-----|-------|----------|-----------|-------|-------|---------|-----------|-------|
| 89h<br>TMOD  | R/W | GATE1 | СТ       | M1        | MO    | GATE0 | СТ      | M1        | MO    |
|              |     | Ti    | imer 1 c | ontrol bi | ts    | Ti    | mer 0 c | ontrol bi | ts    |
| Reset        |     | 0     | 0        | 0         | 0     | 0     | 0       | 0         | 0     |

GATE : Gating control

=1, Timer x enabled while GATEx pin is high and TRx control bit is set.

=0, Timer x enabled while TRx control bit is set.

- CT : Counter or timer select bit
  - =1, Counter mode, Timer x clock from Tx pin.
  - =0, Timer mode, internally clocked.
- M[1 : 0] : Mode select bits

TCON register (0x88)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 88h<br>TCON  | R/W | TF1   | TR1   | TF0   | TR0   | IE1   | IT1   | IE0   | IT0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

TR0 : Timer 0 run control bit



- =1, enabled.
- =0, disabled.

TR1 : Timer 1 run control bit

- =1, enabled.
- =0, disabled.
- TF0 : Timer 0 interrupt (overflow) flag.

Cleared by hardware when processor branches to interrupt routine.

TF1 : Timer 1 interrupt (overflow) flag.

Cleared by hardware when processor branches to interrupt routine.

CKCON register (0x8E)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| 8Eh<br>CKCON | R/W | -     | -     | -     | T1M   | том   | MD2   | MD1   | MD0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

TOM : This bit controls the division of the system clock that drives Timer 0.

- =1, Timer 0 uses a divided-by-4 of the system clock frequency.
- =0, Timer 0 uses a divided-by-12 of the system clock frequency.

T1M : This bit controls the division of the system clock that drives Timer 1.

- =1, Timer 1 uses a divided-by-4 of the system clock frequency.
- =0, Timer 1 uses a divided-by-12 of the system clock frequency.

IE register (0xA8)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| A8h<br>IE    | R/W | EA    | -     | ET2   | ES0   | ET1   | EX1   | ET0   | EX0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

EA : Enable global interrupts.

ET0 : Enable Timer 0 interrupts.

ET1 : Enable Timer 1 interrupts.

IP register (0xB8)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| B8h<br>IP    | R/W | -     | -     | PT2   | PS0   | PT1   | PX1   | PT0   | PX0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

PT0 : Timer 0 priority level control (at 1-high level)

PT1 : Timer 1 priority level control (at 1-high level)

Timer 0, 1 related bits that generate interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software.

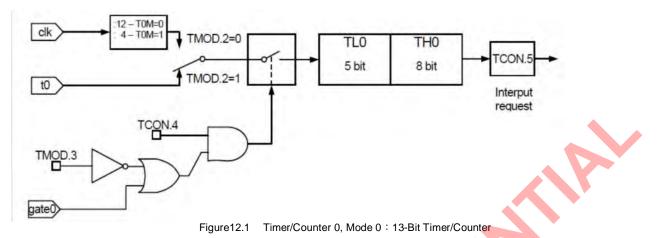
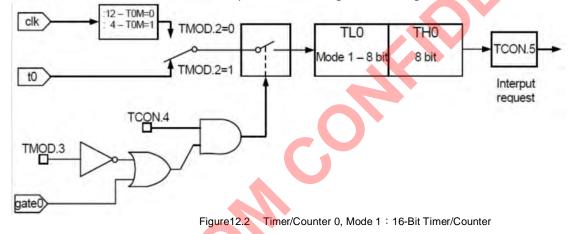

| Interrupt flag | Function          | Active level/edge | Flag resets | Vector | Natural priority |
|----------------|-------------------|-------------------|-------------|--------|------------------|
| TF0            | Internal, Timer 0 | -                 | Hardware    | 0x0B   | 2                |
| TF1            | Internal, Timer 1 | -                 | Hardware    | 0x1B   | 4                |

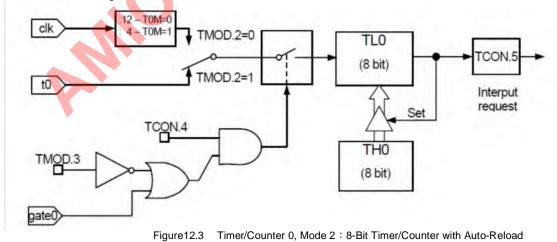
Table12.3 Timer 0, 1 interrupts

#### 12.2.3 Timer 0 - Mode 0


In this mode, the Timer 0 register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s. Timer 0 interrupt flag TF0 is set. The counted input is enabled to the Timer 0 when TCON.4 = 1 and either TMOD.3 = 1 or GATE0 = 1. (Setting TMOD.3 = 1 allows the Timer 0 to be controlled by external input GATE0, to facilitate pulse width measurement). The 13-bit register consists of all 8-bit of TH0 and lower 5 bits of TL0.The upper 3 bits of TL0 are indeterminate and should be ignored.






### 12.2.4 Timer 0 – Mode 1

Mode 1 is the same as Mode 0, except that the timer register is running with all 16 bits. Mode 1 is shown in figure below.



#### 12.2.5 Timer 0 – Mode 2

Mode 2 configures the timer register as an 8-bit counter (TL0) with automatic reloads, as shown in figure below. Overflow from TL0 not only sets TF0, but also reloads TL0 with the contents of TH0, which is loaded by software. The reload leaves TH0 unchanged.





#### 12.2.6 Timer 0 – Mode 3

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in figure below. TL0 uses the Timer 0 control bits : C/T, GATE, TR0, GATE0 and TF0. TH0 is locked into a timer function and use the TR1 and TF1 flag from Timer1 and controls Timer1 interrupt. Mode 3 is provided for applications requiring an extra 8-bit timer/counter. When Timer 0 is in Mode 3, Timer 1 can be turned off by switching it into its own Mode 3, or can still be used by the serial channel as a baud rate generator, or in any application where interrupt from Timer 1 is not required.

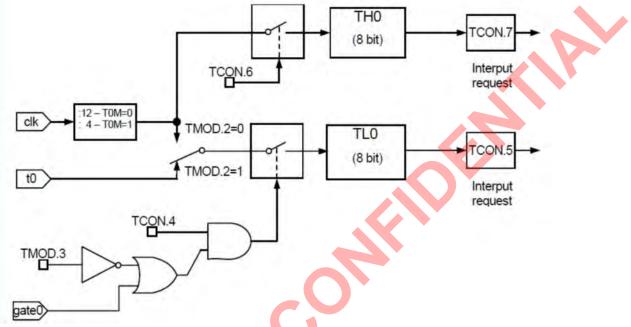
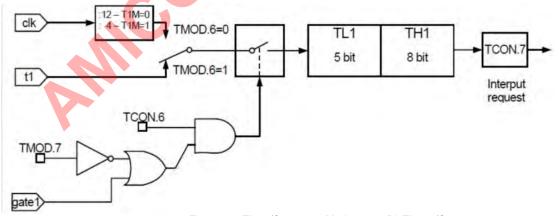
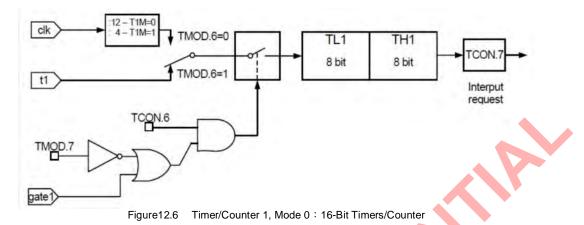




Figure12.4 Timer/Counter 0, Mode 3 : Two 8-Bit Timers/Counters

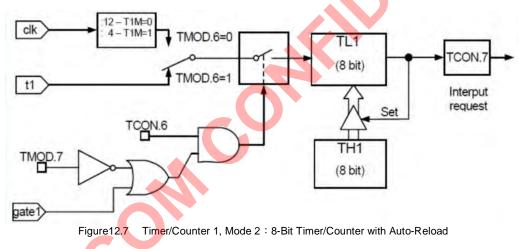
#### 12.2.7 Timer 1 - Mode 0

In this Mode, the Timer1 register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, Timer1 interrupt flag TF1 is set. The counted input is enabled to the Timer1 when TCON.6 = 1 and either TMOD.6 = 0 or GATE1 = 1. (Setting TMOD.7 = 1 allows the Timer1 to be controlled by external input GATE1, to facilitate pulse width measurements). The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored.




#### Figure12.5 Timer/Counter 1, Mode 0 : 13-Bit Timers/Counters

#### 12.2.8 Timer 1 – Mode 1


Mode 1 is the same as Mode 0, except that timer register is running with all 16 bits. Mode 1 is shown in figure below.





#### 12.2.9 Timer 1 - Mode 2

Mode 2 configures the timer register as an 8-bit counter (TL1) with automatic reloads, as shown in figure below. Overflow from TL1 not only sets TF1, but also reloads TL1 with the contents of TH1, which is loaded by software. The reload leaves TH1 unchanged.



#### 12.2.10 Timer 1 – Mode 3

Timer 1 in Mode 3 is held counting. The effect is the same as setting TR1=0.

#### 12.3 Timer2 PINS DESCRIPTION

The Timer 2 pins functionality is described in the following table. All pins are one directional.

| PIN        | ACTIVE      | TYPE        | DESCRIPTION        |
|------------|-------------|-------------|--------------------|
| t2(P1.0)   | falling     | INPUT       | Timer 2 clock line |
| t2ex(P1.1) | high        | INPUT       | Timer 2 control    |
| Table1     | 2 4 Compare | e/Capture r | oins description   |

Table12.4 Compare/Capture pins description

### **12.4 Timer2 FUNCTIONALITY**

#### **12.4.1 OVERVIEW**

Timer 2 is fully compatible with the standard 8052 Timer 2. It is up counter. Totally five SFRs control the Timer 2 operation: TH2/TL2(0xCD/0xCC) counter registers, RLDH/RLDL (0xCB/0xCA) capture registers and T2CON(0xC8) control register. Timer 2 works in the three modes selected by T2CON bits as shown in table below.







| RCLK,<br>TCLK               | CPRL2             | TR2 | Function description                                                                                                                                                            |
|-----------------------------|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                           | 0                 | 1   | 16-bit auto-reload mode. The Timer 2 overflow sets TF2 bit and the TH2,TL2 registers reloaded 16-bit value from RLDH, RLDL.                                                     |
| 0                           | 1                 | 1   | 16-bit capture mode. The Timer 2 overflow sets TF2 bit. When the EXEN2 = 1, the TH2, TL2 register values are stored into RLDH, RLDL while falling edge is detected on T2EX pin. |
| 1                           | Х                 | 1   | Baud rate generator for the UART0 interface. It auto-reloads its counter with RLDH, RLDL values each overflows.                                                                 |
| Х                           | Х                 | 0   | Timer 2 is off                                                                                                                                                                  |
| n <b>er 2 R</b> o<br>jister | egisters<br>(0xC8 | 3)  | Table12.5 Timer 2 modes                                                                                                                                                         |

#### 12.4.2 Timer 2 Registers

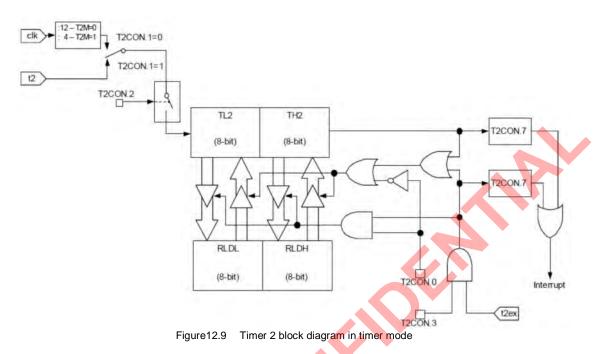
T2CON register

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| C8h<br>APOL  | R/W | TF2   | EXF2  | RCLK  | TCLK  | EXEN2 | TR2   | CT2   | CPRL2 |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

EXF2 : Falling edge indicator on T2EX pin when EXEN = 1. Must be cleared by software.

RCLK : Receive clock enable

=1, UART0 receiver is clocked by Timer 2 overflow pulses


- =0, UART0 receiver is clocked by Timer 2 overflow pulses
- TCLK : Transmit clock enable
  - =1, UART0 transmitter is clocked by Timer 2 overflow pulses.
  - =0, UART0 transmitter is clocked by Timer 2 overflow pulses
- EXEN2 : Enable T2EX pin functionality.
  - =1, Allows capture or reload as a result of T2EX pin falling edge.
  - =0, ignore T2EX events
- TR2 : Start / Stop Timer 2
  - =1, start
  - =0, stop
- CT2: Timer / counter select
  - =1, external event counter. Clock source is T2 pin.
- =0, timer 2 Internally clocked
- CPRL2 : Capture / Reload select

=1, T2EX pin falling edge causes capture to occur when EXEN2 = 1

=0, automatic reload occurs : on Timer 2 overflow or falling edge T2EX pin when EXEN2 = 1. When RCLK or TCLK is set this bit is ignored and automatic reload on Timer 2 overflow is forced.







CKCON register (0x8E)

| <u> </u>     |     |       |       |       |       | _     |       |       |       |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 8Eh<br>CKCON | R/W | -     |       |       | T1M   | том   | MD2   | MD1   | MD0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

T2M : This bit controls the division of the system clock that drives Timer 2. This bit has no effect when the timer is in baud rate generator mode.

=1, Timer 2 uses a divide-by-4 of the system clock frequency.

=0, Timer 2 uses a divide-by-12 of the system clock frequency.

Timer 2 interrupt related bits are shown below. An interrupt can be turned on/off by IE (0xA8) register, and set into high/low priority group by IP register.

IE register (0xA8)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| A8h<br>IE    | R/W | EA    | -     | ET2   | ES0   | ET1   | EX1   | ET0   | EX0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

EA : Enable global interrupts.

ET2 : Enable Timer 2 interrupts.

IP register (0xB8)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| B8h<br>IP    | R/W | -     | -     | PT2   | PS0   | PT1   | PX1   | PT0   | PX0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

PT2 : Timer 2 priority level control (at 1-high level)

- : Unimplemented bit. Read as 0 or 1.

T2CON register (0xC8)



| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| C8h<br>T2CON | R/W | TF2   | EXF2  | RCLK  | TCLK  | EXEN2 | TR2   | CT2   | CPRL2 |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

TF2 : Timer 2 interrupt (overflow) flag. Must be cleared by software.

All Timer 2 related bits generate interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software.

| Interrupt flag | Function          | Active level / edge   | Flag resets | Vector | Natural priority |
|----------------|-------------------|-----------------------|-------------|--------|------------------|
| TF2            | Interrnal, Timer2 | -                     | Software    | 0x2B   | 6                |
|                |                   | Table 12.6 Timer 2 ir | nterrupt    |        |                  |

Interrupt is also generated at falling edge of T2EX pin, while EXEN2 bit is set. This interrupt doesn't set TF2 flag, but EXF2 only and also uses 0x2B vector. Please see picture below. Timer2 internal logic configured as baud-rate generator is shwon below.

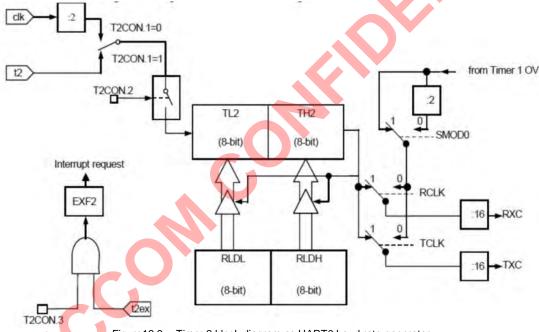



Figure12.9 Timer 2 block diagram as UART0 baud rate generator

Please note that SMOD0 bit is ignored by UART when clocked by Timer2. The RLCK/TCLK frequency is equal to :

$$xCLK = \frac{CLK}{2 \cdot (65536 - RLD)}$$
  
where xCLK = TCLK, RCLK

The flag will not be set when either RCLK or TCLK is set.



### <u>13. UART 0,1</u>

UARTO is full duplex, meaning it can transmit and receive concurrently. It is receive double-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. Writing to SBUFO loads the transmit register, and reading SBUFO reads a physically separate receive register. The serial port can operate in 4 modes: one synchronous and three asynchronous modes. Mode 2 and 3 has a special feature for multiprocessor communications. This feature is enabled by setting SM02 bit in SCON0 register. The master processor first sends out an address byte, which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM02 = 1, no slave will be interrupted by a data byte. An address byte will interrupt all slaves. The addressed slave will clear its SM02 bit and prepare to receive the data bytes that will be coming. The slaves that were not being addressed leave their SM02 set and ignoring the incoming data.

UART1 is also full duplex, meaning it can transmit and receive concurrently. It is receive double-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. Writing to SBUF1 loads the transmit register, and reading SBUF1 reads a physically separate receive register. The serial port can operate in 4 modes: one synchronous and three asynchronous modes. Mode 2 and 3 has a special feature for multiprocessor communications. This feature is enabled by setting SM12 bit in SCON1 register. The master processor first sends out an address byte, which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM12 = 1, no slave will be interrupted by a data byte. An address byte will interrupt all slaves. The addressed slave will clear its SM12 bit and prepare to receive the data bytes that will be coming. The slaves that were not being addressed leave their SM12 set and ignoring the incoming data.

### 13.1 UARTO/1 PINS DESCRIPTION

The UART0 pins functionality is described in the following table. All pins are one directional. There are no three-state output pins and internal signals.

| PIN         | ACTIVE   | TYPE           | DESCRIPTION               |
|-------------|----------|----------------|---------------------------|
| Rxd_0(P3.0) | -        | Input / Output | Serial receiver I_0 / O_0 |
| Txd_0(P3.1) | -        | Output         | Serial transmitter line 0 |
|             | Table13. | 1 UART0 pins c | description               |

# The UART1 pins functionality is described in the following table. All pins are one directional. There are no three-state output pins and internal signals.

| PIN         | ACTIVE   | TYPE           | DESCRIPTION               |
|-------------|----------|----------------|---------------------------|
| Rxd_1(P1.2) | -        | Input / Output | Serial receiver I_1 / O_1 |
| Txd_1(P1.3) | -        | Output         | Serial transmitter line 1 |
|             | Table13. | 2 UART1 pins o | description               |

### **13.2 FUNCTIONALITY**

The UARTO has the same functionality as a standard 8051 UART. The UARTO related registers are: SBUF0(0x99), SCON0(0x98), PCON(0x87), IE(0xA8) and IP(0xB8). The UARTO data buffer (SBUF0) consists of two separate registers: transmit and receive registers. A data writes into the SBUF0 sets this data in UARTO output register and starts a transmission. A data reads from SBUF0, reads data from the UARTO receive register.

| SBUF0 register | (0x99)       |     |       |       |       |       |       |       |       |       |
|----------------|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|                | Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|                | 99h<br>SBUF0 | R/W |       |       |       |       |       |       |       |       |
|                | Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

SB0[7:0] : UART0 buffer



SCON0 register

| (0,30)       |     |       |       |       |       |       |       |       |       |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 98h<br>SCON0 | R/W | SM00  | SM01  | SM02  | REN0  | TB08  | RB08  | TI0   | RI0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

SM02 : Enable a multiprocessor communication feature

(0x98)

#### SM0[1:0] : Sets baud rate

| SM00 | SM01 | Mode | Description    | Baud Rate                                            |
|------|------|------|----------------|------------------------------------------------------|
| 0    | 0    | 0    | Shift register | F <sub>CLK</sub> /12, <mark>F<sub>CLK</sub>/4</mark> |
| 0    | 1    | 1    | 8-bit UART     | Variable(16bit)                                      |
| 1    | 0    | 2    | 9-bit UART     | F <sub>CLK</sub> /32 or F <sub>CLK</sub> /64         |
| 1    | 1    | 3    | 9-bit UART     | Variable(16bit)                                      |
|      |      |      |                |                                                      |

Timer 2 cannot be used as baud rate generator when Compare Capture unit is present in the system. The UART0 baud rates are presented in the table below.

| Mode         | Baud Rate        |                           |
|--------------|------------------|---------------------------|
| Mode 0       | FCLK/12          |                           |
| Mode 1, 3    | Timer 1 overflov | v rate – T1 <sub>ov</sub> |
|              | SMOD0 = 0        | T1 <sub>ov</sub> /32      |
|              | SMOD0 = 1        | T1 <sub>ov</sub> /16      |
|              | Timer 2 overflow | v rate – T2 <sub>ov</sub> |
|              | SMOD0 = x        | T2 <sub>ov</sub> /16      |
| Mode 2       | SMOD0 = 0        | F <sub>CLK</sub> /64      |
|              | SMOD0 = 1        | F <sub>CLK</sub> /32      |
| SMOD0 bit is | located in PCON  | V reaister.               |

The SMOD0 bit is located in PCON reg

(0,07)

REN0 : If set, enable serial reception. Cleared by software to disable reception.

TB08 : The 9<sup>th</sup> transmitted data bit in Modes 2 and 3. Set or cleared by the CPU, depending on the function it performs (parity check, multiprocessor communication etc.)

RB08 : In Modes 2 and 3 it is the 9th data bit received. In Mode 1, if SM02 is 0, RB08 is the stop bit. In Mode 0 this bit is not used.

| PCON   | register |
|--------|----------|
| 1 0014 | register |

| (0,07)       |     | •     |       |       |       |       |       |       |       |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 87h<br>PCON  | R/W | SMOD0 | SMOD1 | -     | PWE   | -     | SWB   | STOP  | PMM   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

SMOD0 : UART0 double baud rate bit when clocked by Timer 1 only.

#### INTERRUPTS

UART0 interrupt related bits are shown below. An interrupt can be turned on / off by IE register, and set into high / low priority group by IP register.

IE register

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| A8h<br>IE    | R/W | EA    | -     | ET2   | ES0   | ET1   | EX1   | ET0   | EX0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

ES0 : RI0 & TI0 interrupt enable flag

(0xA8)

| IP register | (0xB8)       |     |       |       |       |       |       |       |       |       |
|-------------|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|             | Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |



| B8h<br>IP | R/W | - | - | PT2 | PS0 | PT1 | PX1 | PT0 | PX0 |
|-----------|-----|---|---|-----|-----|-----|-----|-----|-----|
| Reset     |     | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   |

PS0 : RI0 & TI0 interrupt priority flag

(0x98)

SCON0 register

| (0,00)       |     |       |       |       |       |       |       |       |       |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| 98h<br>SCON0 | R/W | SM00  | SM01  | SM02  | REN0  | TB08  | RB08  | TIO   | RI0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

TI0 : Transmit interrupt flag, set by hardware after completion of a serial transfer. Must be cleared by software.

RI0 : Receive interrupt flag, set by hardware after completion of a serial reception. Must be cleared by software.

All of bits that generate interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software.

| Interrupt flag | Function        | Active level / edge | Flag resets | Vector | Natural priority |
|----------------|-----------------|---------------------|-------------|--------|------------------|
| TI0 & RI0      | Internal, UART0 | -                   | Software    | 0x23   | 5                |
|                | Ta              | ble13.3 UART        | 0 interrupt |        |                  |

The UART1 has the same functionality as a standard 8051 UART. The UART1 related registers are: SBUF1(0xC1), SCON1(0xC0), PCON(0x87), IE(0xA8) and IP(0xB8). The UART1 data buffer (SBUF1) consists of two separate registers: transmit and receive registers. A data writes into the SBUF1 sets this data in UART1 output register and starts a transmission. A data reads from SBUF1, reads data from the UART1 receive register.

| SBUF1 registe  | r (0x0         | C1)           |                          |                         |       |       |       |       |
|----------------|----------------|---------------|--------------------------|-------------------------|-------|-------|-------|-------|
| Reset          | BIT 7          | BIT 6         | BIT 5                    | BIT 4                   | BIT 3 | BIT 2 | BIT 1 | BIT 0 |
| 0x00           | SB1.7          | SB1.6         | SB1.5                    | SB1.4                   | SB1.3 | SB1.2 | SB1.1 | SB1.0 |
| SB1[7:0] : UAF | RT1 buffer     |               |                          |                         |       |       |       |       |
| SCON1 registe  | er (Ox(        | CO)           |                          |                         |       |       |       |       |
| Reset          | BIT 7          | BIT 6         | BIT 5                    | BIT 4                   | BIT 3 | BIT 2 | BIT 1 | BIT 0 |
| 0x00           | SM10           | SM11          | SM12                     | REN1                    | TB18  | RB18  | TI1   | RI1   |
| SM12 : Enable  | e a multiproce | ssor communi  | cation feature           | <u>}</u>                |       |       |       |       |
| SM1[1:0] : Set | s baud rate    |               |                          |                         |       |       |       |       |
| SM10           | SM11 Mode      | e Description | Baud Ra                  | te                      |       |       |       |       |
| 0              | 0 0            | Shift regist  | er F <sub>CLK</sub> /12, | F <sub>CLK</sub> /4     |       |       |       |       |
| 0              | 1 1            | 8-bit UART    | Variable(                | 16bit)                  |       |       |       |       |
| 1              | 0 2            | 9-bit UART    | F <sub>CLK</sub> /32 с   | or F <sub>CLK</sub> /64 |       |       |       |       |
| 1              | 1 3            | 9-bit UART    | Variable(                | 16bit)                  |       |       |       |       |

Timer 2 cannot be used as baud rate generator when Compare Capture unit is present in the system. The UART1 baud rates are presented in the table below.

Mode **Baud Rate** Mode 0 FCLK/12 Mode 1, 3 Timer 1 overflow rate – T1<sub>ov</sub> SMOD1 = 0T1<sub>ov</sub>/32 SMOD1 = 1 $T1_{ov}/16$ Timer 2 overflow rate - T2<sub>ov</sub> SMOD1 = x $T2_{ov}/16$ Mode 2 SMOD1 = 0F<sub>CLK</sub>/64 SMOD1 = 1F<sub>CLK</sub>/32 The SMOD1 bit is located in PCON register.

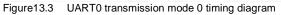
REN1 : If set, enable serial reception. Cleared by software to disable reception.



TB18 : The 9<sup>th</sup> transmitted data bit in Modes 2 and 3. Set or cleared by the CPU, depending on the function it performs (parity check, multiprocessor communication etc.)

RB18 : In Modes 2 and 3 it is the 9<sup>th</sup> data bit received. In Mode 1, if SM12 is 0, RB18 is the stop bit. In Mode 0 this bit is not used.

| PCON register                                 | (0x87)                |                |                 |                  |                   |                 |                |
|-----------------------------------------------|-----------------------|----------------|-----------------|------------------|-------------------|-----------------|----------------|
| Reset BIT                                     |                       | BIT 5          | BIT 4           | BIT 3            | BIT 2             | BIT 1           | BIT 0          |
| 0x00 SMC                                      |                       |                | PWE             | -                | SWB               | STOP            | PMM            |
| SMOD1 : UART1 do                              | ouble baud rate bit w | hen clocked b  | y Timer 1 only  |                  |                   |                 |                |
|                                               |                       |                |                 |                  |                   |                 | $\mathbf{V}$   |
|                                               |                       |                |                 |                  |                   |                 |                |
| INTERRUPTS                                    |                       | alow An inter  | runt oon ho tu  | road on / off by | IE register en    | d act into high | / low priority |
| UART1 interrupt rela<br>group by IP register. |                       | elow. An inter | rupi can be iu  | med on / on by   | ri⊏ register, an  | a set into righ | / low priority |
| group by it register.                         |                       |                |                 |                  |                   |                 |                |
| IE register (0                                | xA8)                  |                |                 |                  |                   |                 |                |
|                                               | Addrose/Namo          | DAM DIA 7      |                 | Rif / Rif 2      |                   |                 |                |
|                                               | A8h                   | 10.33          | DICODICO        |                  |                   |                 |                |
|                                               | IE                    | R/W EA         | - ET2           | ES0 ET1          | EX1 ET0 I         | EX0             |                |
|                                               | Reset                 | 0              | 0 0             | 0 0              | 0 0               | 0               |                |
| ES1 : RI1 & TI1 inte                          | rrupt enable flag     |                |                 |                  |                   |                 |                |
|                                               |                       |                |                 |                  |                   |                 |                |
| IP register (0                                | xB8)                  |                | •               |                  |                   |                 |                |
| Reset BI1                                     |                       | BIT 5          | BIT 4           | BIT 3            | BIT 2             | BIT 1           | BIT 0          |
| 0x00                                          | PS1                   | PT2            | P\$0            | PT1              | PX1               | PT0             | PX0            |
| PS1 : RI1 & TI1 inte                          | rrupt priority flag   |                |                 |                  |                   |                 |                |
| 000014                                        |                       |                |                 | •                |                   |                 |                |
| SCON1 register                                | (0xC0)                | BIT 5          |                 |                  |                   |                 |                |
| Reset BIT                                     |                       | SM12           | BIT 4<br>REN1   | BIT 3<br>TB18    | BIT 2<br>RB18     | BIT 1<br>TI1    | BIT 0<br>RI1   |
| TI1 : Transmit interr                         |                       |                |                 |                  | IXD IO            | 111             |                |
|                                               | ed by software.       | ware alter con |                 |                  |                   |                 |                |
| RI1 : Receive interru                         |                       | are after com  | pletion of a se | rial reception.  |                   |                 |                |
|                                               | ed by software.       |                |                 |                  |                   |                 |                |
| made bo bloard                                | d by contrare.        |                |                 |                  |                   |                 |                |
| All of bits that generation                   | ate interrupts can be | set or cleared | d by software,  | with the same i  | result as if they | had been set    | or cleared by  |
| hardware. That is, in                         |                       |                |                 |                  |                   |                 | 5              |


Interrupt flag Function Active level / edge Flag resets Vector Natural priority TI1 & RI1 Internal, UART1 - Software 0x33 7 Table 13.4 UART1 interrupt

### **13.3 OPERATING MODES**

#### 13.3.1 UARTO MODE 0, SYNCHRONOUS

Pin RXD0I serves as input and RXD0O as output. TXD0 output is a shift clock. The baud rate is fixed at 1/12 of the CLK clock frequency. Eight bits are transmitted with LSB first. Reception is initialized by setting the flags in SCON0 as follows: RI0=0 and REN0=1.

|           | Ons      | 200ms        | 4COns     | 600ns  8 | 00ns  1.0   | lus   .20s           | 1.qus | 1.6us                                             | 8us       | 2.0us 2.2us  |
|-----------|----------|--------------|-----------|----------|-------------|----------------------|-------|---------------------------------------------------|-----------|--------------|
| clk       | บบบบบบบบ | Աստորորուսու | תהתתתהנות | התחתתתתת | התתתתתתת    | ที่ที่กับการเกิดการเ |       | มนนนอนทางการการการการการการการการการการการการการก | ուսուսուս | תתההות ההתתח |
| cik/12    | A        | Λ            |           |          |             | A                    |       |                                                   |           |              |
| BUF_wite  |          |              |           |          |             |                      |       |                                                   |           |              |
| send      |          | /            |           |          |             |                      |       |                                                   |           | 1            |
| BUF_shift |          |              |           |          |             | Λ                    | Λ     | Λ                                                 | Λ         | Λ            |
| rxd       |          | χ D          | σχ        | Di X     | ΰ2 <u>χ</u> | D3 X                 | D4 X  | D6 X                                              | DG X      | D7 /         |
| txd       |          | 1            |           |          |             |                      |       |                                                   |           |              |
| ti        |          |              |           |          |             |                      |       |                                                   |           | 1            |





#### 13.3.2 UARTO MODE 1, 8-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE

Pin RXD0I serves as input, and TXD0 serves as serial output. 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading SBUF0, and stop bit sets the flag RB08 in the SFR SCON0. The baud rate is variable and depends from Timer 1 or Timer 2 mode. To enable Timer 2 clocking set the TCLK, RCLK bits located in T2CON (0xC8) register. SMOD0 bit is ignored when UART is clocked by Timer2.

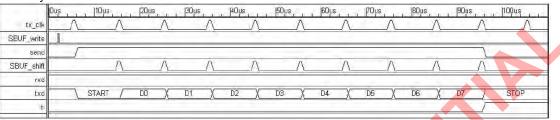



Figure13.4 UART0 transmission mode 1 timing diagram

#### 13.3.3 UARTO MODE 2, 9-BIT UART, FIXED BAUD RATE

This mode is similar to Mode 1 with two differences. The baud rate is fixed at 1/32 or 1/64 of CLK clock frequency, and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9<sup>th</sup> bit, and a stop bit (1). The 9<sup>th</sup> bit can be used to control the parity of the UART0 interface: at transmission, bit TB08 in SCON0 is output as the 9<sup>th</sup> bit, and at receive, the 9<sup>th</sup> bit affects RB08 in SCON0.

|            | Ons, i | 500ns | 1.0us   | 1.5us | 2.0us | 2.5us          | B.Ous       | 3.5us | 4.0us     | 4.5us         | 5.0us | 5.5us    | 6.0us | 6.5us | 7.Dus         | 7.50 |
|------------|--------|-------|---------|-------|-------|----------------|-------------|-------|-----------|---------------|-------|----------|-------|-------|---------------|------|
| tx_clk     | 1      |       |         | _     |       |                |             |       | $\Lambda$ | $\wedge$      | A     |          |       |       | $\Lambda_{-}$ |      |
| SBUF_write | I      | _     |         |       |       | 2              |             |       |           |               |       | ~        |       |       |               |      |
| send       |        |       |         |       |       |                |             |       |           |               |       |          |       |       |               |      |
| SBUF_shift |        |       |         |       |       | $ \_ \land \_$ | $  \Delta $ |       | $\Lambda$ | $\Lambda_{-}$ |       | <u> </u> |       |       | $\Lambda_{-}$ |      |
| rxd        |        |       | 100     |       |       |                |             |       |           |               | -     |          |       |       |               |      |
| tred       |        | 1     | START / | DO    | X     | οι χ           | D2 X        | D3    | ) D4      | X             | D6 (  | D6 )     | D7    | ( твя | 1             | STDP |
| ti         |        |       |         |       |       |                |             |       |           |               |       |          |       |       |               |      |

Figure13.5 UART0 transmission mode 2 timing diagram

#### 13.3.4 UARTO MODE 3, 9-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE

The only difference between Mode 2 and Mode 3 is that the baud rate is a variable in Mode 3. When REN0=1 data receiving is enabled. The baud rate is variable and depends from Timer 1 or Timer 2 mode. To enable Timer 2 clocking set the TCLK, RCLK bits located in T2CON (0xC8) register. SMOD0 bit is ignored when UART is clocked by Timer2.

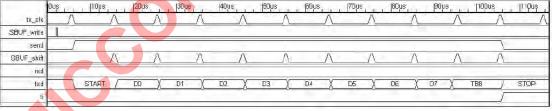



Figure13.6 UART0 transmission mode 3 timing diagram

A8105 supports different crystal frequency by programmable "Clock Register" (0Dh). Based on this, three important internal clocks F<sub>CGR</sub>, F<sub>DR</sub> and F<sub>SYCK</sub> are generated.

- (1) F<sub>XTAL</sub>: Crystal frequency.
- (2)  $F_{XREF}$ : Crystal Ref. Clock =  $F_{XTAL}$  \* (DBL+1).
- (3)  $F_{CGR}$ : Clock Generation Reference = 2MHz =  $F_{XREF}$  / (GRC+1), where  $F_{CGR}$  is used to generate 32M PLL.
- (4) F<sub>MCLK</sub>: Master Clock is either F<sub>XREF</sub>: or 32M PLL, where F<sub>MCLK</sub> is used to generate F<sub>SYCK</sub>.
- (5) F<sub>SYCK</sub>: System Clock = 16MHz=F<sub>MCLK</sub> / CSC= 32 \* F<sub>IF</sub>, where F<sub>IF</sub> is recommended to set 500KHz.
- (6)  $F_{DR}$ : Data Rate Clock =  $F_{IF}$  / (SDR+1).
- (7)  $F_{FPD}$ : VCO Compared Clock = =  $F_{XREF} / (RRC+1)$ .

#### 13.3.5 UART1 MODE 0, SYNCHRONOUS

Pin RXD1I serves as input and RXD1O as output. TXD1 output is a shift clock. The baud rate is fixed at 1/12 of the CLK clock frequency. Eight bits are transmitted with LSB first. Reception is initialized by setting the flags in SCON1 as follows: RI1=0 and REN1=1.

69



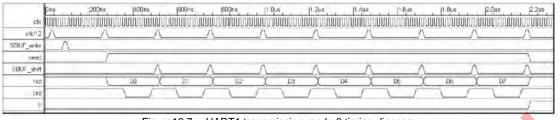



Figure13.7 UART1 transmission mode 0 timing diagram

#### 13.3.6 UART1 MODE 1, 8-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE

Pin RXD1I serves as input, and TXD1 serves as serial output. 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading SBUF1, and stop bit sets the flag RB18 in the SFR SCON1. The baud rate is variable and depends from Timer 1 or Timer 2 mode. To enable Timer 2 clocking set the TCLK, RCLK bits located in T2CON (0xC8) register. SMOD1 bit is ignored when UART is clocked by Timer2.



UART1 transmission mode 1 timing diagram Figure13.8

#### 13.3.7 UART1 MODE 2, 9-BIT UART, FIXED BAUD RATE

This mode is similar to Mode 1 with two differences. The baud rate is fixed at 1/32 or 1/64 of CLK clock frequency, and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9<sup>th</sup> bit, and a stop bit (1). The 9<sup>th</sup> bit can be used to control the parity of the UART1 interface: at transmission, bit TB18 in SCON1 is output as the 9<sup>th</sup> bit, and at receive, the 9<sup>th</sup> bit affects RB18 in SCON1.

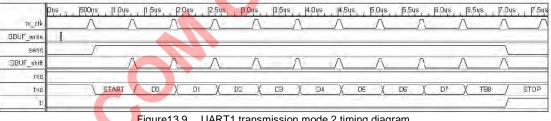
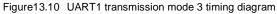




Figure13.9 UART1 transmission mode 2 timing diagram

#### 13.3.8 UART1 MODE3, 9-BIT UART, VARIABLE BAUD RATE, TIMER CLOCK SOURCE

The only difference between Mode 2 and Mode 3 is that the baud rate is a variable in Mode 3. When REN1=1 data receiving is enabled. The baud rate is variable and depends from Timer 1 or Timer 2 mode. To enable Timer 2 clocking set the TCLK, RCLK bits located in T2CON (0xC8) register. SMOD1 bit is ignored when UART is clocked by Timer2.

|            | OUS . | nn-      | 10us  |   | 20us | 6. W S   | 30µ | s            | 40us |              | 50us | 0.00          | 60us | ii ii    | 70us | 80µs |           | 190 | IS .     | 1 100 | us           | 11Qus |
|------------|-------|----------|-------|---|------|----------|-----|--------------|------|--------------|------|---------------|------|----------|------|------|-----------|-----|----------|-------|--------------|-------|
| tx_clk     |       | $\wedge$ | 22    | Λ |      | $\Delta$ | 22  | $\_\Lambda_$ |      | $_{\Lambda}$ | 1916 | $\Delta$      |      | $\wedge$ |      | 001  | $\Delta$  | 20  |          | 22    | $_{\Lambda}$ |       |
| SBUF_write |       |          |       |   |      |          |     |              |      |              |      |               |      | -        |      |      |           | _   |          |       | _            |       |
| send       |       | 5        |       |   |      |          |     |              |      |              |      |               |      |          |      |      |           |     |          |       |              |       |
| SBUF_shift | 1     |          |       | A |      | A        |     | 1            |      | $\Lambda$    |      | $\Lambda_{-}$ |      | $\land$  |      |      | $\Lambda$ |     | $\Delta$ |       | $\Lambda$    |       |
| bot        |       |          |       |   |      |          |     |              | _    |              |      |               |      |          |      |      |           |     |          |       |              |       |
| txd        |       | 7 8      | START | E | CO   | X        | D1  |              | D2   | X            | D3   | X             | D4   | X        | D6 ) | DE   | X         | D7  | X        | TB8   | 1            | STOP  |
| ť          |       |          | -     |   |      |          |     |              |      |              |      |               |      |          |      |      |           |     |          |       | T            |       |





### 14. IIC interface

A8105's I<sup>2</sup>C peripheral provides two-wire interface between the device and I<sup>2</sup>C -compatible device by the two-wire I<sup>2</sup>C serial bus. The I<sup>2</sup>C peripheral supports the following functions.

- Conforms to v2.1 of the I<sup>2</sup>C specification (published by Philips Semiconductor)
- Master transmitter / receiver
- Slave transmitter / receiver
- Flexible transmission speed modes: Standard (up to 100 Kb/s) and Fast (up to 400Kb/s)
- Multi-master systems supported
- Supports 7-bit addressing modes on the I<sup>2</sup>C bus
- Interrupt generation
- Allows operation from a wide range of input clock frequencies (build-in 8-bit timer)

PIN 23 and PIN 24 are I2C Interface in A8105. The alternate function is Port 0.5 and Port 0.6. User can set BBSEL (BBH) to set up the PIN function. Please refer the Chapter 11 for more detail information.

| PIN        | TYPE               | DESCRIPTION                          |
|------------|--------------------|--------------------------------------|
| 1 11 1     |                    |                                      |
| SCL(P0.5)  | INPUT /OUTPUT      | I <sup>2</sup> C clock input /output |
| 00L(1 0.0) |                    |                                      |
| SDA(P0.6)  | INPUT/ OUTPUT      | I <sup>2</sup> C data input /output  |
| 3DA(1 0.0) |                    |                                      |
| ·          | Table14.1 I2C inte | rface pins description               |
|            |                    | nace pins description                |

### 14.1 Master mode I<sup>2</sup>C

The I<sup>2</sup>C master mode provides an interface between a microprocessor and an I<sup>2</sup>C bus. It can be programmed to operate with arbitration and clock synchronization to allow it to operate in multi-master systems. Master mode I<sup>2</sup>C supports transmission speeds up to 400Kb/s.

#### 14.1.1 I<sup>2</sup>C REGISTERS

There are six registers used to interface to the host: the Control, Status, Slave Address, Transmitted Data, Received Data and Timer Period Register.

| Register                               | Address    |
|----------------------------------------|------------|
| Slave address – I2CMSA                 | 0xF4       |
| Control – I2CMCR                       | 0xF5       |
| Transmitted data I2CBUF                | 0xF6       |
| Timer period - I2CMTP                  | 0xF7       |
| Table14.3 I <sup>2</sup> C Registers f | or writing |
|                                        |            |

| Register               | Address |
|------------------------|---------|
| Slave address – I2CMSA | 0xF4    |
| Status – I2CMSR        | 0xF5    |
| Received data - I2CBUF | 0xF6    |
| Timer period - I2CMTP  | 0xF7    |
|                        |         |

Table14.4 I<sup>2</sup>C Registers for reading

### ■ I<sup>2</sup>C Master mode Timer Period Register

To generate wide range of SCL frequencies the core have built-in 8-bit timer. Programming sequence must be done at least once after system reset. After reset, register have 0x01 value by default.

| SCL_PERIOD = 2 x (1+TIMER_PRD) x (SCL_LP + 1) x CLK_PRD          |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|--|--|
| For example :                                                    |  |  |  |  |  |  |  |
| - CLK_PRD = 33,33ns (CLK_FRQ = 30MHz) ;                          |  |  |  |  |  |  |  |
| - TIMER_PRD = 3 ;                                                |  |  |  |  |  |  |  |
| - SCL LP = 6 ;                                                   |  |  |  |  |  |  |  |
|                                                                  |  |  |  |  |  |  |  |
| SCL_PERIOD = 2 x (1 + 3) x (6 + 1 ) x 33,33ns = 3200ns = 2,666us |  |  |  |  |  |  |  |
| SCL_FREQUENCY = 1 / 2,666us = 375 KHz                            |  |  |  |  |  |  |  |
| SCL_PRD - SCL line period (I2C clock line)                       |  |  |  |  |  |  |  |
| TIMER PRD -Timer period register value (range 1 to 255)          |  |  |  |  |  |  |  |



# A8105

### 2.4GHz FSK/GFSK SOC

 SCL\_LP
 - SCL\_LOW\_PERIOD constant value (range 2 to 15)

 CLK\_PRD
 - System clock period (1/f<sub>clk</sub>)

I2CMTP (0xE7)

I2CMCR

| Address/Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| E7h<br>I2CMTP | R/W | 0     | P.6   | P.5   | P.4   | P.3   | P.2   | P.1   | P.0   |
| Reset         |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     |

#### ■ I<sup>2</sup>C CONTROL AND STATUS REGISTERS

The Control Register consists of eight bits: the RUN, START, STOP, ACK, HS, ADDR, SLRST and RSTB bit.

The RSTB bit performs reset of whole I<sup>2</sup>C controller and behaves identically as external reset provided by RST pin. Using this bit software application can reinitialize I<sup>2</sup>C mater module when some problem is encountered on I<sup>2</sup>C bus. In case when I<sup>2</sup>C Slave device blocks I<sup>2</sup>C bus, then SLRST bit should be set along with RUN bit (just after issuing the RSTB). SLRST bit causes that I<sup>2</sup>C master module generates 9 SCK clocks (no START is generated) to recover Slave device to known state and issues at the end STOP. This bit is automatically cleared by I2C MASTER MODULE, thus, it is always read as '0'. The BUSY bit should be checked to know when this transmission is ended.

The START bit will cause the generation of the START, or REPEATED START condition. The STOP bit determines if the cycle will stop at the end of the data cycle, or continue on to a burst. To generate a single send cycle, the Slave Address register is written with the desired address, the R/S bit is set to '0', and Control Register is written with HS=0, ACK=x, STOP=1, START=1, RUN=1 (binary xxx0x111 x-mean 0 or 1) to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt is generated. The data may be read from Received Data Register. When I2C MASTER MODULE core operates in Master receiver mode the ACK bit must be set normally to logic 1. This cause the I2C MASTER MODULE bus controller to send acknowledge automatically after each byte. This bit must be reset when the I2C MASTER MODULE bus controller requires no further data to be sent from slave transmitter.

The ADDR bit along with RUN bit cause the generation of the START condition and transmission of Slave Address. Next STOP can end transmission, or REPEATED START generates the START and ADDRRESS sequence once again. In both cases STOP can ends transmission. See I<sup>2</sup>C MASTER MODULE ACK Polling chapter for details.

| (0xF5 | 5)            |          |       |       |       |       |       |       |       |       |
|-------|---------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | Address/Name  | R/W      | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|       | F5h<br>I2CMCR | R/W      | RSTB  | SLRST | ADDR  | HS    | ACK   | STOP  | START | RUN   |
|       | Reset         | $\frown$ | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| RSTB | SLRST | ADDR | HS | R/S    | ACK | STOP   | START       | RUN      | OPERATION                                         |
|------|-------|------|----|--------|-----|--------|-------------|----------|---------------------------------------------------|
| 0    | 0     | 0    | 0  | 0      | -   | 0      | 1           | 1        | START condition followed by SEND (Master          |
|      |       |      |    |        |     |        |             |          | remains in Transmitter mode)                      |
| 0    | 0     | 0    | 0  | 0      | -   | 1      | 1           | 1        | START condition followed by SEND and STOP         |
|      |       |      |    |        |     |        |             |          | condition                                         |
|      |       |      |    |        |     |        |             |          |                                                   |
| 0    | 0     | 0    | 0  | 1      | 0   | 0      | 1           | 1        | START condition followed by RECEIVE operation     |
|      |       |      |    |        |     |        |             |          | with negative Acknowledge (Master remains in      |
|      |       |      |    |        |     |        |             |          | Receiver mode)                                    |
| 0    | 0     | 0    | 0  | 1      | 0   | 1      | 1           | 1        | START condition followed by RECEIVE and STOP      |
|      |       |      |    |        |     |        |             |          | condition                                         |
| 0    | 0 🕨   | 0    | 0  | 1      | 1   | 0      | 1           | 1        | START condition followed by RECEIVE (Master       |
|      |       |      |    |        |     |        |             |          | remains in Receiver mode)                         |
| 0    | 0     | 0    | 0  | 1      | 1   | 1      | 1           | 1        | forbidden sequence                                |
| 0    | 0     | 0    | 1  | 0      | 0   | 0      | 0           | 1        | Master Code sending and switching to High-speed   |
|      |       |      |    |        |     |        |             |          | mode                                              |
| 1    | 0     | 0    | -  | -      | -   | -      | -           | -        | I2CM module software reset                        |
| 0    | 1     | 0    | 0  | 0      | 0   | 0      | 0           | 1        | Reset slaves connected to I2C bus by generating 9 |
|      |       |      |    |        |     |        |             |          | SCK clocks followed by STOP                       |
| 0    | 0     | 1    | 0  | 0      | 0   | 0      | 0           | 1        | START condition followed by Slave Address         |
|      |       |      | Т  | ahle14 | 5   | Contro | l hits comb | inations | nermitted in IDLE state *                         |

 Table14.5
 Control bits combinations permitted in IDLE state

# A8105



# 2.4GHz FSK/GFSK SOC

| RSTB | SLRST | ADDR | HS | R/S | ACK | STOP | START | RUN | OPERATION                                                  |  |  |  |  |  |
|------|-------|------|----|-----|-----|------|-------|-----|------------------------------------------------------------|--|--|--|--|--|
| 0    | 0     | 0    | 0  | -   | -   | 0    | 0     | 1   | SEND operation (Master remains in Transmitter              |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     | mode)                                                      |  |  |  |  |  |
| 0    | 0     | 0    | 0  | -   | -   | 1    | 0     | 0   | STOP condition                                             |  |  |  |  |  |
| 0    | 0     | 0    | 0  | -   | -   | 1    | 0     | 1   | SEND followed by STOP condition                            |  |  |  |  |  |
| 0    | 0     | 0    | 0  | 0   | -   | 0    | 1     | 1   | Repeated START condition followed by SEI                   |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     | (Master remains in Transmitter mode)                       |  |  |  |  |  |
| 0    | 0     | 0    | 0  | 0   | -   | 1    | 1     | 1   | Repeated START condition followed by SEND a                |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     | STOP condition                                             |  |  |  |  |  |
| 0    | 0     | 0    | 0  | 1   | 0   | 0    | 1     | 1   | Repeated START condition followed by RECEI                 |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     | operation with <b>negative Acknowledge</b> (Mas            |  |  |  |  |  |
|      | -     | _    | -  |     | -   |      | _     |     | remains in Receiver mode)                                  |  |  |  |  |  |
| 0    | 0     | 0    | 0  | 1   | 0   | 1    | 1     | 1   | Repeated START condition followed by SEND a STOP condition |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     |                                                            |  |  |  |  |  |
| 0    | 0     | 0    | 0  | 1   | 1   | 0    | 1     | 1   | Repeated START condition followed by RECEIVE               |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     | (Master remains in Receiver mode)                          |  |  |  |  |  |
| 0    | 0     | 0    | 0  | 1   | 1   | 1    | 1     | 1   | forbidden sequence                                         |  |  |  |  |  |
| 1    | 0     | 0    | -  | -   | -   | -    | -     | -   | I2CM module software reset                                 |  |  |  |  |  |
| 0    | 0     | 1    | 0  | 0   | -   | 0    | 1     | 1   | Repeated START condition followed by Slave                 |  |  |  |  |  |
|      |       |      |    |     |     |      |       |     | Address                                                    |  |  |  |  |  |

Table14.6

Control bits combinations permitted in Master Transmitter mode

| Acknowledge   |
|---------------|
|               |
|               |
| า             |
| s in Receiver |
|               |
| by RECEIVE    |
| euge (master  |
| by RECEIVE    |
| by RECEIVE    |
|               |
| ed by SEND    |
| by SEND and   |
|               |
|               |
| e             |

 Table14.7
 Control bits combinations permitted in Master Receiver mode

The status Register is consisted of six bits : the BUSY bit, the ERROR bit, the ADDR\_ACK bit, the DATA\_ACK bit, the ARB\_LOST bit, and the IDLE bit.

I2CMSR (0xF5)

| Address/Name  | R/W  | Bit 7 | Bit 6        | Bit 5 | Bit 4        | Bit 3        | Bit 2        | Bit 1 | Bit 0 |
|---------------|------|-------|--------------|-------|--------------|--------------|--------------|-------|-------|
| F5h<br>I2CMSR | R/W  | -     | BUS_<br>BUSY | IDLE  | ARB_<br>LOST | DATA_<br>ACK | ADDR_<br>ACK | ERROR | BUSY  |
| Reset         | 0x20 | 0     | 0            | 1     | 0            | 0            | 0            | 0     | 0     |

IDLE : This bit indicates that I2C BUS controller is in the IDLE state •

A8105



# 2.4GHz FSK/GFSK SOC

BUSY : This bit indicates that I2C BUS controller receiving, or transmitting data on the bus, and other bits of Status register are no valid;

BUS\_BUSY : This bit indicates that the Bus is Busy, and access is not possible. This bit is set / reset by START and STOP conditions;

ERROR : This bit indicates that due the last operation an error occurred: slave address wasn't acknowledged, transmitted data wasn't acknowledged, or I2C Bus controller lost the arbitration;

ADDR\_ACK : This bit indicates that due the last operation slave address wasn't acknowledged;

ARB\_LOST : This bit indicates that due the last operation I2C Bus controller lost the arbitration;

#### ■ SLAVE ADDRESS REGISTER

The Slave address Register consists of eight bits : Seven address bits (A6-A0), and Receive/ not send bit R/S. The R/S bit determines if the next operation will be a Receive (high), or Send (low).

I2CMSA (0xF4)

| Address/Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| F4h<br>I2CMCA | R/W | A.6   | A.5   | A.4   | A.3   | A.2   | A.1   | A.0   | R/S   |
| Reset         |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### ■ I<sup>2</sup>C Buffer – RECEIVER AND TRANSMITTER REGISTERS

I2C module has two separated 1 byte buffer in receiver and transmitter and these are located in the same address (0xF6). The Transmitted Data Register consists of eight data bits which will be sent on the bus due the next Send, or Burst Send operation. The first send bit is D.7 (MSB).

I2CBUF (0xF6)

| Address/Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| F6h<br>I2CBUF | R/W | D.7   | D.6   | D.5   | D.4   | D.3   | D.2   | D.1   | D.P   |
| Reset         |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

The Receiver Data Register consists of eight data bits which have been received on the bus due the last receive, or Burst Receive operation.

I2CBUF (0xF6)

|               |   |     |     |     | DIL 4 | DIUS | BIT 2 | Bit 1 | Bit 0 |
|---------------|---|-----|-----|-----|-------|------|-------|-------|-------|
| F6h<br>I2CBUF | W | D.7 | D.6 | D.5 | D.4   | D.3  | D.2   | D.1   | D.P   |
| Reset         |   | 0   | 0   | 0   | 0     | 0    | 0     | 0     | 0     |

#### 14.2.4 I2C MASTER MODULE AVAILABLE SPEED MODES

Default transmission parameter/constant values are shown in sections below. SCL clock frequency can be changed by modification of timer period values as show in the table below.

#### I2C MASTER MODULE STANDARD MODE

Typical configuration values for Standard speed mode :

The following table gives an example parameters for standard I2C speed mode.

| System clock  | TIMER_PERIOD | Transmission speed |
|---------------|--------------|--------------------|
| 4 MHz         | 1 (01h)      | 100kb/s            |
| 6 MHz         | 2 (02h)      | 100kb/s            |
| 10 MHz        | 4 (04h)      | 100kb/s            |
| 16 MHz        | 7 (07h)      | 100kb/s            |
| 20 MHz        | 9 (09h)      | 100kb/s            |
| <br>100 11107 |              |                    |

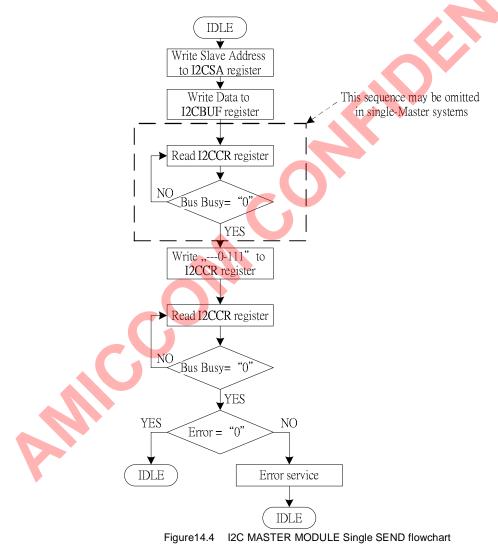
Table14.8

I2C MASTER MODULE Timer period values for standard speed mode



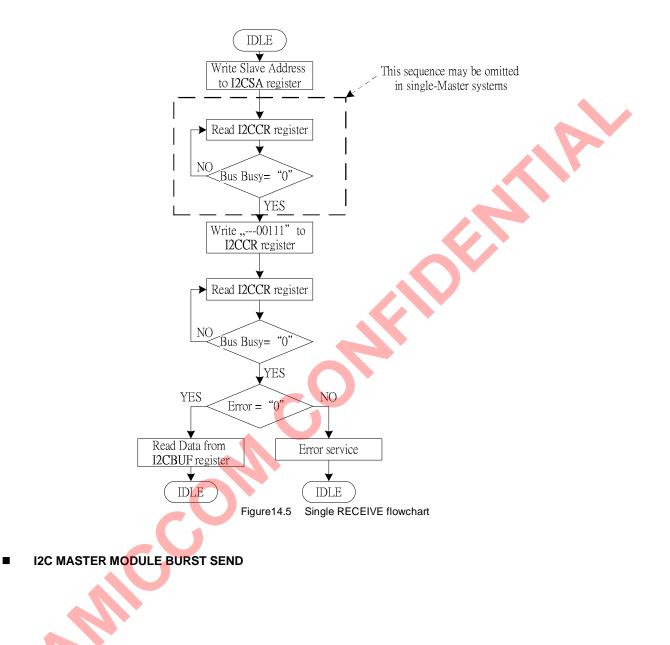
#### ■ I2C MASTER MODULE FAST MODE

Typical configuration values for Fast speed mode :

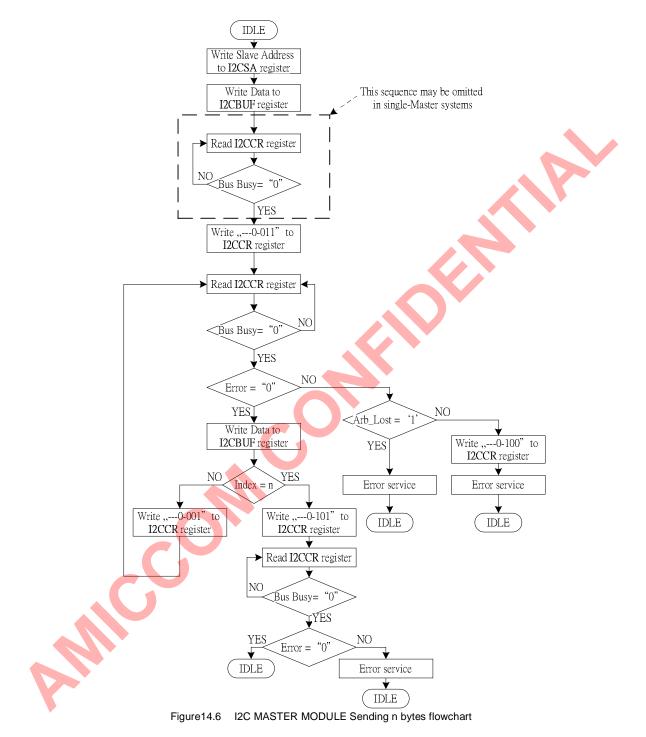

The following table gives example parameters for Fast I2C speed mode.

| System clock | TIMER_PERIOD | Transmission speed |
|--------------|--------------|--------------------|
| 10 MHz       | 1 (01h)      | 250 Kb/s           |
| 16 MHz       | 1 (01h)      | 400 Kb/s           |
| 20 MHz       | 2 (02h)      | 333 Kb/s           |

Table14.8 I2C MASTER MODULE Timer period values for Fast speed mode

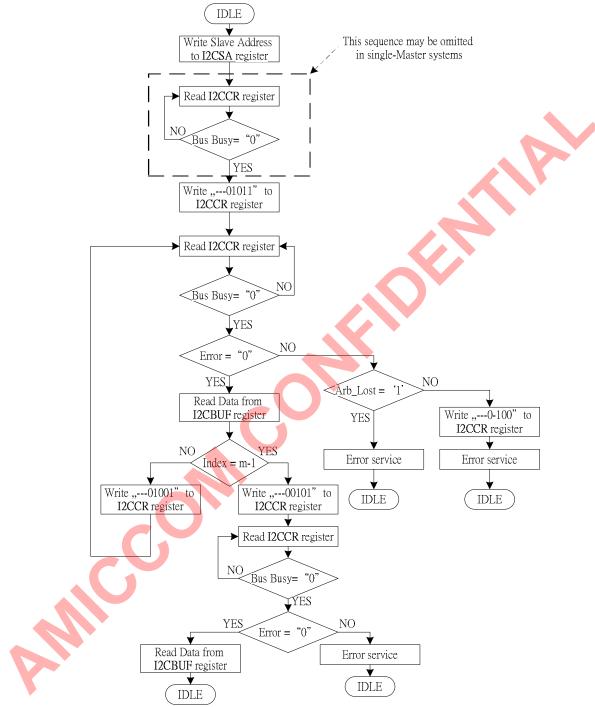

#### 14.2.5 I2C MASTER MODULE AVAILABLE COMMAND SEQUENCES

#### ■ I2C MASTER MODULE SINGLE SEND




■ I2C MASTER MODULE SINGLE RECEIVE










#### ■ I2C MASTER MODULE BURST RECEIVE





#### Figure14.7 I2C MASTER MODULE Receiving m bytes flowchart

#### ■ I2C MASTER MODULE BURST RECEIVE AFTER BURST SEND



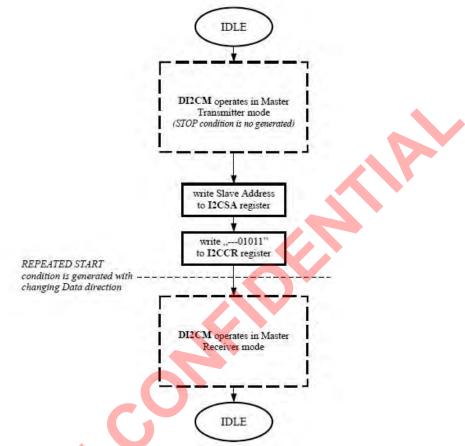



Figure14.8 I2C MASTER MODULE Sending n bytes then Repeated Start and Receiving m bytes flowchart

■ I2C MASTER MODULE BURST SEND AFTER BURST RECEIVE



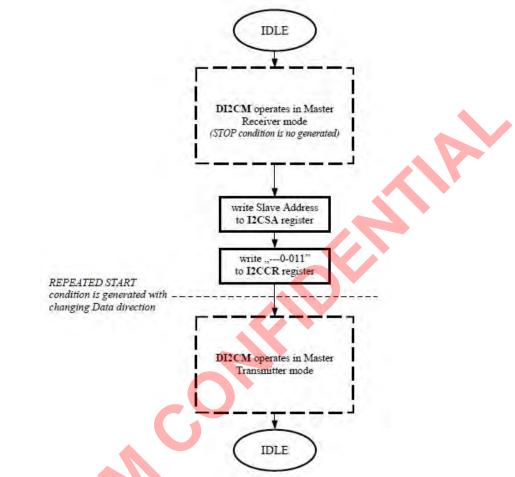



Figure14.9 I2C MASTER MODULE Receiving m bytes then Repeated Start and Sending n bytes flowchart

Figure 14.10 I2C MASTER MODULE Single RECEIVE with 10-bit addressing flowchart

■ I2C MASTER MODULE ACK POLLING





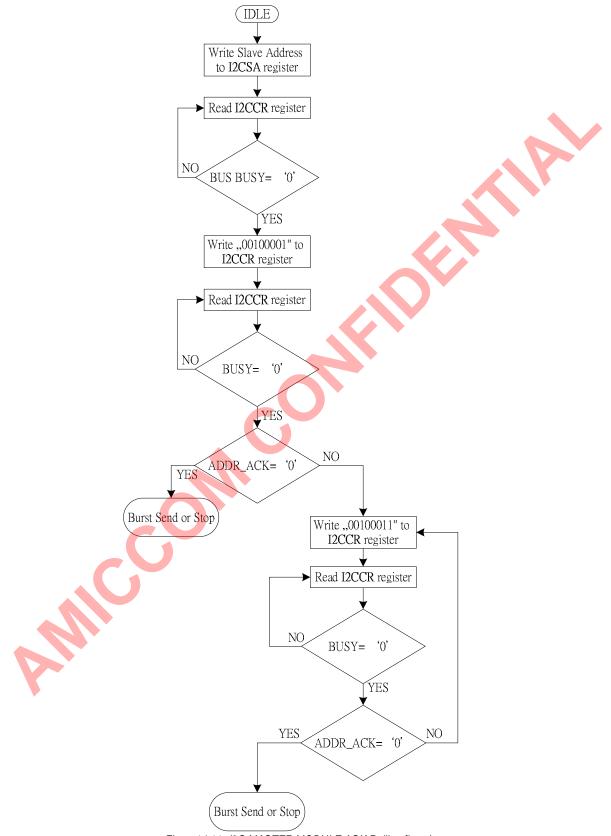



Figure 14.11 I2C MASTER MODULE ACK Polling flowchart



## **14.3 I2C MASTER MODULE INTERRUPT GENERATION**

I2C MASTER MODULE interrupt flag is automatically asserted when I2C transfer (send or receive a byte) is completed or transfer error has occurred. I2CMIF flag has to be cleared by software.

| Interrupt flag | Function                    | Active level/edge   | Flag resets | Vector | Natural priority |
|----------------|-----------------------------|---------------------|-------------|--------|------------------|
| I2CMIF         | Internal, I2C MASTER MODULE | -                   | Software    | 0x6B   | 14               |
|                | Table14.11 I2C MAS          | TER MODULE interrup | ot summary  |        |                  |

I2C MASTER MODULE related interrupt bits have been summarized below. The IE (0xA8) contains global interrupt system disable (0) / enable (1) bit called EA.

EIE (0xE8)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| E8h<br>EIE   | R/W | EI2CS<br>ESPI | EI2CM | EWDI  | EINT6 | EINT5 | EINT4 | EINT3 | EINT2 |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

EI2CM : Enable I2C MASTER MODULE interrupts

EIP (0xF8)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| F8h<br>EIP   | R/W | PI2CS<br>PSPI | PI2CM | PWDI  | PINT6 | PINT5 | PINT4 | PINT3 | PINT2 |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

PI2CM : I2C MASTER MODULE priority level control (at 1-high-level)

EIF (0x91)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| 91h<br>EIF   | R/W | I2CSF<br>SPIF | I2CMF | -     | INT6F | INT5F | INT4F | INT3F | INT2F |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

I2CMIF : I2C MASTER MODULE interrupt flag

Must be cleared by software writing logic '1'. Writing '0' does not change its content.

#### 14.5 Slave mode I<sup>2</sup>C

The I<sup>2</sup>C module provides an interface between a microprocessor and I<sup>2</sup>C bus. It can works as a slave receiver or transmitter depending on working mode determined by microprocessor/microcontroller. The core incorporates all features required by  $1^2$ C specification. The  $1^2$ C module supports all the transmission modes: Standard and Fast.

#### 14.5.1 I2C MODULE INTERNAL REGISTERS

There are five registers used to interface to the target device : The Own Address, Control, Status, Transmitted Data and Received Data registers.

| Register                        | Address        |
|---------------------------------|----------------|
| Own address – I2CSOA            | 0xF1           |
| Control – I2CSCR                | 0xF2           |
| Transmitted data – I2CSBUF      | 0xF3           |
| Table 14 12 I2C MODULE Register | rs for writing |

Table14.12 I2C MODULE Registers for writing



| Register                | Address         |
|-------------------------|-----------------|
| Own address – I2CSOA    | 0xF1            |
| Control – I2CSSR        | 0xF2            |
| Received data – I2CSBUF | 0xF3            |
|                         | aistors for roa |

 Table 14.13
 I2C MODULE Registers for reading

## I2CSOA – OWN ADDRESS REGISTER

The Own Address Register consists of seven address bits which identify I<sup>2</sup>C module core on I<sup>2</sup>C Bus. This register can be read and written at the address 0xF1.

I2CSOA (0xF1)

| Address/Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| F1h<br>I2CSOA | R/W | -     | A.6   | A.5   | A.4   | A.3   | A.2   | A.1   | A0    |
| Reset         |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### ■ I2CSCR – CONTROL AND STATUS REGISTERS

The Control Register consists of the bits : The RSTB and DA bit. The RSTB bit performs reset of whole  $I^2C$  controller and behaves identically as external reset provided by RST pin. Using this bit software application can reinitialize  $I^2C$  module when some problem is encountered on  $I^2C$  bus. The DA bit enables ('1') and disable ('0') the  $I^2C$  module device operation. DA is set immediately to '1' when CPU write DA=1. This register can be only written at address 0xF2. Reading this address puts status register on data bus – see below.

I2CSCR (0xF2)

| Address/Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3     | Bit 2      | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-------|-----------|------------|-------|-------|
| F2h<br>I2CSCR | R/W | RSTB  | DA    | 7     |       | RECFINCLR | SENDFINCLR | -     | -     |
| Reset         |     | 0     | 0     | 0     | 0     | 0         | 0          | 0     | 0     |

DA : Device Active – enable or disable the I<sup>2</sup>C module device operation;

RSTB : Reset of whole  $I^2C$  controller by writing '1' to this bit. It behaves identically as RST pin

RECFINCLR : Writing '1' to this bit clears RECFIN bit from the I2C MODULE status register.

SENDFINCLR : Writing '1' to this bit clears SENDFIN bit from the I2C MODULE status register.

The Status Register consists of five bits: the DA, BUSACTIVE, RECFIN, SENDFIN bit, RREQ bit, TREQ bit. The receive finished RECFIN bit indicates that Master I2C controller has finished transmitting of data during single or burst receive operations. It also causes generation of interrupt on IRQ pin. The send finished SENDFIN bit indicates that Master I2C controller has finished receiving of data during single or burst send operations. It also causes generation of interrupt on IRQ pin. The Receive Request RREQ bit indicates that I<sup>2</sup>C module device has received data byte from I2C master. I<sup>2</sup>C module host device (usually CPU) should read one data byte from the Received Data register I2CSBUF. The Transmit Request TREQ bit indicates that I2C MODULE device is addressed as Slave Transmitter and I<sup>2</sup>C module host device (usually CPU) should write one data byte into the Transmitted Data register I2CSBUF. The BUSACTIVE '1' signalizes that any transmission (send, receive or own address detection) is in progress. BUSACTIVE is cleared ('0') automatically by I<sup>2</sup>C module in case when there is no any transmission. This is read only bit.

The DA bit should be polled (read) when CPU wrote DA=0. The DA bit is not immediately cleared when any I2C transmission (send, receive or own address detection) is in progress. When current transmission has completed then this bit is cleared to '0' and I<sup>2</sup>C module become inactive.

I2CSSR (0xF2)

| Address/Name  | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4     | Bit 3  | Bit 2   | Bit 1 | Bit 0 |
|---------------|-----|-------|-------|-------|-----------|--------|---------|-------|-------|
| F2h<br>I2CSSR | R/W |       | DA    | -     | BUSACTIVE | RECFIN | SENDFIN | TREQ  | RREQ  |
| Reset         |     | 0     | 0     | 0     | 0         | 0      | 0       | 0     | 0     |

DA : Device Active – enable ('1') or disable ('0') the I2C MODULE device operation;

 $\label{eq:BUSACTIVE:Bus ACTIVE - '1' signalizes that any transmission: send, receive or own address detection is in progress; \\ RREQ : Indicates that I^2C module device has received data byte from I^2C master; \\ \end{tabular}$ 

It is automatically cleared by read of I2CSBUF.



TREQ : Indicates that I<sup>2</sup>C module device is addressed as transmitter and requires data byte from host device; It is automatically cleared by write data I2CSBUF.

RECFIN : Indicates that Master I2C controller has ended transmit operation. It means that no more RREQ will be set during this single or burst  $I^2C$  module receive operation. It is cleared by writing '1' to the RECFINCLR bit in the  $I^2C$  module control register.

SENDFIN : Indicates that Master I2C controller has ended receive operation. It means that no more TREQ will be set during this single or burst I<sup>2</sup>C module send operation. It is cleared by writing '1' to the SENDFINCLR bit in the I2C control register.

#### NOTE : All bits are active at HIGH level ('1').

#### ■ I2CSBUF – RECEIVER AND TRANSMITTER REGISTERS

The Transmitter Data Register consists of eight Data bits which will be sent on the bus due the next Send operation. The first send bit is the D.7(MSB).

I2CSBUF (0xF3)

| Address/Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| F3h<br>I2CSBUF | R/W | D.7   | D.6   | D.5   | D.4   | D.3   | D.2   | D.1   | D.0   |
| Reset          |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

The Receiver Data Register consists of eight data bits which have been received on the bus due the last Receive operation.

I2CSBUF (0xF3)

| Address/Name   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| F3h<br>I2CSBUF | R/W | D.7   | D.6   | D.5   | D.4   | D.3   | D.2   | D.1   | D.0   |
| Reset          |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## 14.7 AVAILABLE I2C MODULE TRANSMISSION MODES

This chapter describes all available transmission modes of the I<sup>2</sup>C module core. Default I2C own address for all presented waveforms is 0x39 ("0111001").

#### 14.7.1 I<sup>2</sup>C module SINGLE RECEIVE

The figure below shows a set of sequences during Single data Receive by I2C MODULE. Single receive sequences :

- ♦ Start condition
- ♦ I<sup>2</sup>C module is addressed by I2C Master as receiver
- ♦ Address is acknowledged by I<sup>2</sup>C module
- ♦ Data is received by I<sup>2</sup>C module
- ♦ Data is acknowledged by I<sup>2</sup>C module
- ♦ Stop condition

#### 14.7.2 I<sup>2</sup>C module SINGLE SEND

The figure below shows a set of sequences during Single data Send by I2C MODULE. Single send sequences :

- ♦ Start condition
- ♦ Address is acknowledged by I<sup>2</sup>C module
- ♦ Data is transmitted by I<sup>2</sup>C module
- ♦ Data is not acknowledged by I2C Master
- ♦ Stop condition

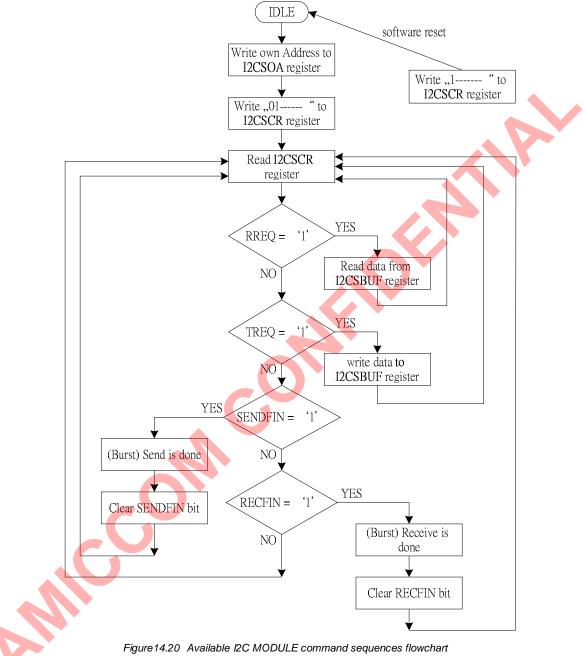
#### 14.7.3 I<sup>2</sup>C module BURST RECEIVE

The figure below shows a set of sequences during Burst data Receive by I<sup>2</sup>C module. Burst receive sequences :

- ♦ Start condition
- I<sup>2</sup>C module is addressed by I2C Master as receiver
- ♦ Address is acknowledged by I<sup>2</sup>C module
- $\diamond \qquad (1) \text{Data is received by } I^2 \text{C module}$



- ∻ (2)Data is acknowledged by I<sup>2</sup>C module
- STOP condition ∻
- Sequences (1) and (2) are repeated until Stop condition occurs.


#### 14.7.4 I<sup>2</sup>C module BURST SEND

The figure below shows a set of sequences during Burst Data Send by I<sup>2</sup>C module. Burst send sequences :

- ∻ Start condition
- ∻ I<sup>2</sup>C module is addressed by I2C Master as transmitter
- ∻ Address is acknowledged by I<sup>2</sup>C module
- (1)Data is transmitted by I<sup>2</sup>C module ∻
- (2) Data is acknowledged by I2C Master ∻
- (3)Last data is not acknowledged by I2C Master ∻
- ∻ Stop condition

Sequences (1) and (2) are repeated until last transmitted data is not acknowledged (3) by I2C Master.





# 14.7.5 AVAILABLE I<sup>2</sup>C module COMMAND SEQUENCES FLOWCHART

## **14.8 I2C MODULE INTERRUPT GENERATION**

I2C MODULE interrupt flag is automatically asserted when I2C transfer (send or receive a byte) is completed or transfer error has occurred. I2CSIF flag has to be cleared by software.

| Interrupt flag | Function        | Active level/edge | Flag resets      | Vector | Natural priority |
|----------------|-----------------|-------------------|------------------|--------|------------------|
| I2CSIF         | Internal, DI2CS | -                 | Software         | 0x73   | 15               |
|                | Table14.16      | I2C MODULE        | E interrupt summ | nary   |                  |

I2C MODULE related interrupt bits have been summarized below. The IE (0xA8) contains global interrupt system disable (0) / enable (1) bit called EA.



EIE (0xE8)

| Address/Name | R/W | Bit 7         | Bit 6 |      | Bit 4 | Bit 3 | Bit 2 |       | Bit 0 |
|--------------|-----|---------------|-------|------|-------|-------|-------|-------|-------|
| E8h<br>EIE   | R/W | EI2CS<br>ESPI | EI2CM | EWDI | EINT6 | EINT5 | EINT4 | EINT3 | EINT2 |
| Reset        |     | 0             | 0     | 0    | 0     | 0     | 0     | 0     | 0     |

EI2CS : Enable I2C MODULE interrupts

EIP (0xF8)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| F8h<br>EIP   | R/W | PI2CS<br>PSPI | PI2CM | PWDI  | PINT6 | PINT5 | PINT4 | PINT3 | PINT2 |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

PI2CS : I2C MODULE priority level control (at 1-high-level)

EIF (0x91)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| 91h<br>EIF   | R/W | I2CSF<br>SPIF | I2CMF | -     | INT6F | INT5F | INT4F | INT3F | INT2F |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### I2CSIF : I2C MODULE interrupt flag

Software should determine the source of interrupt by check both modules' interrupt related bits. Must be cleared by software writing 0x80. It cannot be set by software.

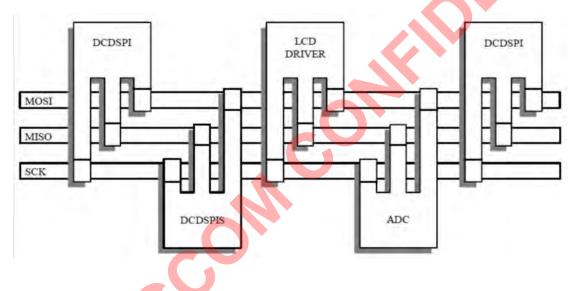
- : Unimplemented bit. Read as 0 or 1.

. set .0 or 1.



# 15. SPI interface

The SPI is a fully configurable SPI master/slave device, which allows user to configure polarity and phase of serial clock signal SCK.


The SPI allows the microcontroller to communicate with serial peripheral devices. It is also capable of inter-processor communications in a multi-master system. A serial clock line (SCK) synchronizes shifting and sampling of the information on the two independent serial data lines. SPI data are simultaneously transmitted and received.

The SPI is a technology independent design that can be implemented in a variety of process technologies.

The SPI system is flexible enough to interface directly with numerous standard product peripherals from several manufacturers. The system can be configured as a master or a slave device. Data rates as high as System clock divided by four (CLK/4). Clock control logic allows a selection of clock polarity and a choice of two fundamentally different clocking protocols to accommodate most available synchronous serial peripheral devices. When the SPI is configured as a master, software selects one of four different bit rates for the serial clock.

The SPI automatically drive selected by SSCR (Slave Select Control Register) slave select outputs (SS70 – SS00), and address SPI slave device to exchange serially shifted data.

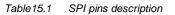
Error-detection logic is included to support inter-processor communications. A write-collision detector indicates when an attempt is made to write data to the serial shift register while a transfer is in progress. A multiple-master mode-fault detector automatically disables SPI output drivers if more than one SPI devices simultaneously attempts to be become bus master.



# **15.1 KEY FEATURES**

All features listed below are included in the current version of SPI core.

#### SPI Master

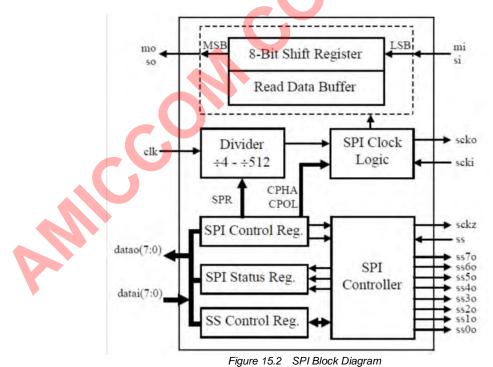

- Full duplex synchronous serial data transfer
- Master operation
- Multi-master system supported
- Up to 8 SPI slaves can be addressed
- System error detection
- Interrupt generation
- Supports speeds up to 1/4 up to system clock
- Bit rates generated 1/4, 1/8, 1/32, 1/64, 1/128, 1/512 of system clock
- Four transfer formats supported
- Simple interface allows easy connection to microcontrollers
- SPI Slave
  - Full duplex synchronous serial data transfer
  - Slave operation
  - System error detection
  - Interrupt generation
  - Supports speeds up to 1/4 of system clock



- Simple interface allows easy connection to microcontrollers
- Four transfer formats supported
- Fully synthesizable, static synchronous design with no internal tri-states

## **15.2 SPI PINS DESCRIPTION**

| PIN                      | TYPE           | ACTIVE | DESCRIPTION                                             |
|--------------------------|----------------|--------|---------------------------------------------------------|
| Scki_Scko(P0.0)          | INPUT / OUTPUT | -      | SPI clock input / output                                |
| Miso(P0.1)               | INPUT / OUTPUT | -      | Master serial data input / Slave serial data output 🔪 🥢 |
| simo(P0.2)               | INPUT / OUTPUT | -      | Slave serial data input / Master serial data output     |
| ss(P0.3)                 | INPUT          | low    | Slave select                                            |
| ss7o –                   | OUTPUT         | low    | Slave select output                                     |
| ss0o <mark>(P0.4)</mark> |                |        |                                                         |




## **15.3 SPI HARDWARE DESCRIPTION**

#### **15.3.1 BLOCK DIAGRAM**

When an SPI transfer occurs, an 8-bit character is shifted out on data pin while a different 8-bit character is simultaneously shifted in a second data pin. Another way to view this transfer is that an 8-bit shift register in the master and another 8-bit shift register in the slave are connected as a circular 16-bit shift register. When a transfer occurs, this distributed shift register is shifted eight bit positions; thus, the characters in the master and slave are effectively exchanged.

The central element in the SPI system is the block containing the shift register and the read data buffer. The system is single buffered in the transmit direction and double buffered in the receive direction. This fact means new data for transmission cannot be written to the shifter until the previous transaction is complete; however, received data is transferred into a parallel read data buffer so the shifter is free to accept a second serial character. As long as the first character is read out of the read data buffer before the next serial character is ready to be transferred, no overrun condition will occur.



The eight pins are associated with the SPI: the SS, clock pins SCKI, SCKO and SCKEN, master pins MI and MO and slave pins SOEN, SI and SO.

The SS input pin in a master mode is used to detect mode-fault errors. A low on this pin indicates that some other device in a multi-master system has become a master and trying to select the SPI MODULE as a slave. The SS input pin in a slave mode is used to enable transfer.

A8105



# 2.4GHz FSK/GFSK SOC

The SCKI pin is used when the SPI is configured as a slave. The input clock from a master synchronizes data transfer between a master and the slave devices. The slave device ignore the SCKI signal unless the SS (slave select) pin is active low.

The SCKO and SCKEN pins are used as the SPI clock signal reference in a master mode. When the master initiates a transfer eight clock cycles is automatically generated on the SCKO pin.

When the SPI is configured as a slave the SI pin is the slave input data line, and the SO is the slave output data line.

When the SPI is configured as a master, the MI pin is the master input data line, and the MO is the master output data line. **15.3.2 INTERNAL REGISTERS** 

#### SPI Control Register

The control register may be read or written at any time, is used to configure the SPI System. SPCR (0xEC)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ECh<br>EIE   | R/W | SPIE  | SPE   | SPR2  | MSTR  | CPOL  | CPHA  | SPR1  | SPR0  |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     |

SPIE : SPI interrupt enable

= 0, interrupts are disabled, polling mode is used

= 1, interrupts are enabled

SPE : SPI system enable

- = 0, system is off
- = 1, system is on

MSTR : Master/Slave mode select

- = 0, slave
- = 1, master

CPOL : Clock polarity select

- = 0, high level; SCK idle low
- = 1, low level; SCK idle high

CPHA : Clock phase.. Select one of two different transfer formats

# SPR[2:0] : SPI clock rate select bits. See the table below

| SPR2 | SPR1 | SPR0 | System clock divided by |
|------|------|------|-------------------------|
| 0    | 0    | 0    | 4                       |
| 0    | 0    | 1    | 8                       |
| 0    | 1    | 0    | 16                      |
| 0    | 1    | 1    | 32                      |
| 1    | 0    | 0    | 64                      |
| 1    | 0    | 1    | 128                     |
| 1    | 1    | 0    | 256                     |
| 1    | 1    | 1    | 512                     |

#### Slave Select Control Register

The control register may be read or written at any time. It is used to configure which slave select output should be driven while SPI master transfer. Contents of SSCR register is automatically assigned on SS7O-SS0O pins when SPI master transmission starts.

SSCR (0xEF)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EFh<br>SSCR  | R/W | SS7   | SS6   | SS5   | SS4   | SS3   | SS2   | SS1   | SS0   |
| Reset        |     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

SS7 - SS0

= 0, Pin SSxO assigned while Master Transfer

= 1, Pin SSxO is forced to logic 1

#### • SPI Status Register

SPSR (0xED)



| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EDh<br>EIE   | R/W | SPIF  | WCOL  | -     | MODF  | -     | -     | -     | SSCEN |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     |

SPIF : SPI interrupt request. The flag is automatically set to one at the end of an SPI transfer.

WCOL : Write collision error status flag. The flag is automatically set if the SPDR is written while a transfer is in process. MODF : SPI mode-fault error status flag

This flag is set if SS pin goes to active low while the SPI is configured as a master (MSTR = 1) SSCEN :

= 1, auto SS assertions enabled

= 0, auto SS assertions disabled - SSO always shows contents of SSCR

SPI status register (SPSR) contains flags indicating the completion of transfer or occurrence of system errors. All flags are set automatically when the corresponding event occur and cleared by software sequence. SPIF and WCOL are automatically cleared by reading SPSR followed by an access of the SPDR. MODF flag is cleared by reading SPSR with MODF set followed by a write to SPCR.

The SSCSEN bit is a enable bit of automatic Slave Select Outputs assertion. When SSCEN is set ('1') then during master transmission the SSXO lines are automatically loaded with contents of SSCR register before each byte transfer, and deasserted when byte is transferred. When SSCEN bit is cleared the SSXO lines always shows contents of the SSCR register, regardless of the transmission is in progress or SPI MODULE is in IDLE state.

• Receiver and Transmitter Registers

The Transmitted Data Register consists of eight data bits, which will be sending on the bus due the next Send operation. The first send bit is the D.7 (MSB).

SPDR (0xEE)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EEh<br>SPDR  | R/W | D.7   | D.6   | D.5   | D.4   | D.3   | D.2   | D.1   | D.0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     |

The Received Data Register consists of eight data bits, which were received on the bus due the last Receive operation. SPDR (0xEE)

| Address/Name | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EEh<br>SPDR  | R/W | D.7   | D.6   | D.5   | D.4   | D.3   | D.2   | D.1   | D.0   |
| Reset        |     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     |

# **15.4 MASTER OPERATIONS**

When the SPI MODULE core is configured as a SPI master, the transfer is initiated by write to the SPDR register. When the new byte is written to the SPDR register, SPI MODULE begins transfer on the nearest BAUD timer overflow. The serial clock SCK is generated by the SPI MODULE. In master mode the SPI MODULE activates the SCKEN to enable the SCK output driver.

The SPI MODULE in master mode can select one of the eight SPI slave devices, through the SSxO lines. The SSxO lines – Slave Select output lines are loaded with contents of the SSCR register (0x03). The SSCEN bit from the SPSR register select between automatic SSxO lines control and software control. When set the automatic Slave Select outputs assertion is enabled. With SSCEN bit set in master mode the SSXO lines are automatically loaded with contents of SSCR register before each byte transfer, and deasserted when byte is transferred. When SSCEN bit is cleared the SSXO lines are controlled by the software, and always shows contents of the SSCR register, regardless of the transmission is in progress or the SPI MODULE is in IDLE state.



| SPDR                                            | <u>χ</u> (S                            | PDR)                                   | Χ                                | (SPDR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|-------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| WR                                              |                                        |                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| SSxO                                            |                                        |                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| MOSI                                            | 7 (6) 5)                               | $4\sqrt{3}\sqrt{2}\sqrt{1}\sqrt{0}$    | - (7)(6)                         | (5)(4)(3)(2)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)                             |
| SCK                                             |                                        |                                        |                                  | www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| SPIF                                            |                                        |                                        | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                                 |                                        |                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| line                                            |                                        | Automatic slave sele                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100mc It Ous                    |
| Ons<br>SPDR                                     | 100ns  200ns  300                      |                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00ns  1,0us                     |
| 11111                                           | 100ns  200ns  300                      | ns  400ns  500ns                       |                                  | 00ns  800ns  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00ns 11.0us<br>X                |
| SPDR                                            | 100ns  200ns  300                      | ns  400ns  500ns<br>PDR)               |                                  | 00ns  800ns  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0us<br>11.0us<br>X           |
| SPDR<br>SSCR X                                  | 100ns  200ns  300<br>X (SI             | ns  400ns  500ns<br>PDR)<br>(SSCR)     |                                  | 00ns  800ns  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000ns 11,0us<br>X<br>V<br>(x03) |
| SPDR<br>SSCR X<br>WR V                          | 100ns  200ns  300<br>X (SI             | ns  400ns  500ns<br>PDR)<br>(SSCR)     | ,  600ns ,  7<br>X               | 00ns  800ns  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                               |
| SPDR<br>SSCR X<br>WR V/ ADDR X03/X0             | 100ns  200ns  300<br>X (SI<br>/<br>22) | ns  400ns  500ns<br>PDR)<br>(SSCR)     | ,  600ns ,  7<br>X               | 00ns  800ns  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                               |
| SPDR<br>SSCR X<br>WR V/V<br>ADDR X03/X0<br>SSXO | 100ns  200ns  300<br>X (SI<br>/<br>22) | ns    400ns    500ns<br>PDR)<br>(SSCR) | ↓  600ns    7<br>X<br>↓/<br>x02) | 00ns  800ns  900ns  900 | Х<br>√<br>(хоз)                 |

Figure 15.4 Software controlled SSxO lines

#### **15.4.1 MASTER MODE ERRORS**

In master mode two system errors can be detected by the SPI MODULE. The first type of error arises in multiple-master system when more than one SPI device simultaneously tries to be a master. This error is called a Mode Fault. The second error type, a Write Collision, indicates that CPU tried to write the SPDR register while transfer was in progress.

#### MODE FAULT ERROR

AMICCON

Mode fault error occur when the SPI MODULE is configured as a master and some other SPI master device will select this device as if it were a slave. If a Mode Fault Error occur :

- ♦ The MSTR bit is forced to zero to reconfigure the SPI MODULE as a slave.
- The SPE bit is forced to zero to disable the SPI MODULE system
- The MODF status flag is set and an interrupt request is generated

The MODF flag is cleared by reading SPSR with MODF set followed by a write to SPCR

| SPDR    | (SPDR)               |
|---------|----------------------|
| SPDR_WR |                      |
| SSxO    |                      |
| MOSI    | 7 <u>X 6 X 5 X 4</u> |
| SCK     |                      |
| SS      | 1                    |
| SPEN    | <u>\</u>             |
| MSTR    | ·                    |
| MODF    |                      |

Figure 15.5 Mode Fault Error generation

WRITE-COLLISION ERROR



A write collision occurs if the SPI MODULE data register is written while a transfer is in progress. The transfer continues undisturbed, and the write data that caused the error is not written to the shifter. The Write Collision is indicated by the WCOL flag in SPSR (3) register.

The WCOL flag is set automatically by hardware, when the WCOL error condition occurs. To clear the WCOL bit, user should execute the following sequence:

- ♦ Read contents of the SPSR register
- Perform access to the SPDR register (read or write)

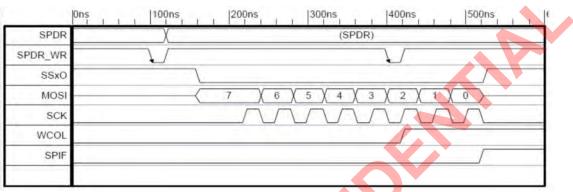



Figure 15.6 Write Collision Error in SPI Master mode

#### **15.5 SLAVE OPERATIONS**

When configured as SPI Slave the SPI MODULE transfer is initiated by external SPI master module by assertion of the SPI MODULE Slave Select input, and generation of the SCK serial clock.

Before transfer starts, the SPI master has to assert the Slave Select line to determine which SPI slave will be used to exchange data. The SS is asserted (cleared = 0), the clock signal connected to the SXCK line will cause the SPI MODULE slave to shift into receiver shift register contents of the MOSI line, and drives the MISO line with contents of the Transmitter Shift register. When all eight bits are shifted in/out the SPI MODULE generates the Interrupt request by setting the IRQ output. In SPI MODULE slave mode only one transfer error is possible – Write Collision Error.

#### 15.5.1 SLAVE MODE ERRORS

In slave mode, only the Write Collision Error can be detected by the SPI MODULE.

The Write Collision Error occurs when the SPDR register write is performed while the SPI MODULE transfer is in progress.

In SLAVE mode when the CPHA is cleared, the write collision error may occur as long as the SS Slave Select line is driven low, even if all bits are already transferred. This is because there is not clearly specified the transfer beginning, and SS driven low after full byte transfer may indicate beginning of the next byte transfer.

#### WRITE-COLLISION ERROR

A write collision occurs if the SPI MODULE data register is written while a transfer is in progress. The transfer continues undisturbed, and the write data that caused the error is not written to the shifter. The Write Collision is indicated by the WCOL flag in SPSR (3) register.

The WCOL flag is set automatically by hardware, when the WCOL error condition occurs. To clear the WCLO bit, user should execute the following sequence:

- Read contents of the SPSR register
- Perform access to the SPDR register (read or write)

| SPDR    | (SPDR)                           |
|---------|----------------------------------|
| SPDR_WR |                                  |
| SS      |                                  |
| MISO    | 7 <u>(6 (5 ) 4 (3 ) 2 (1 ) 0</u> |
| SCK     |                                  |
| WCOL    |                                  |

办



Figure below shows the WCOL generation, in case that the CPHA is cleared. As it is shown the WCOL generation is cause by any S{DR register write with SS line cleared. It is done even if the SPI master didn't generate the serial clock SCK. This is because there is not clearly specified the transfer beginning, and SS driven low after full byte transfer may indicate beginning of the next byte transfer.

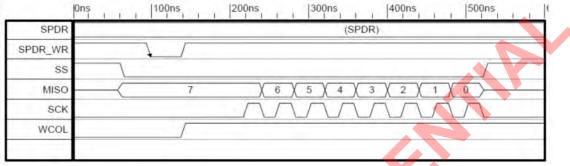
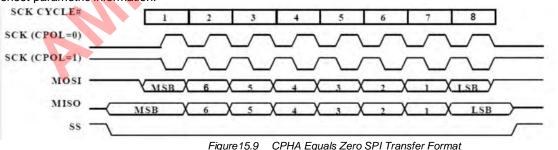



Figure 15.8 WCOL Error-SPI Slave mode-SPDR write when CPHA = 0 and SS = 0

## **15.6 CLOCK CONTROL LOGIC**

#### 15.6.1 SPI CLOCK PHASE AND POLARITY CONTROLS


Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or active low clock and has no significant effect on the transfer format. The clock phase (CPHA) control bit selects one of two fundamentally different transfer formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transfers to allow a master device to communicate with peripheral slaves having different requirements. The flexibility of the SPI system on the SPI MODULE allows direct interface to almost any existing synchronous serial peripheral.

#### 15.6.2 SPI MODULE TRANSFER FORMATS

During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line synchronizes shifting and sampling of the information on the two serial data lines. A slave select line allows individual selection of a slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate a multiple-master bus contention.

#### 15.6.3 CPHA EQUALS ZERO TRANSFER FORMAT

Figure below shows a timing diagram of an SPI transfer where CPHA is 0. Two waveforms are shown for SCK: one for CPOL equals 0 and another for CPOL equals 1. The diagram may be interpreted as a master or slave timing diagram since the SCK, master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the slave select input to the slave; the SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high. This timing diagram functionally depicts how a transfer takes place; it should not be used as a replacement for data-sheet parametric information.



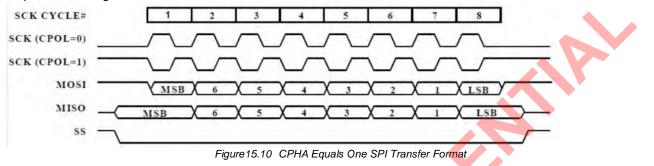

When CPHA = 0, the SS line must be deasserted and reasserted between each successive serial byte. Also, if the slave writes data to the SPI data register (SPDR) while SS is active low, a write-collision error results. When CPHA = 1, the SS line may remain active low between successive transfers (can be tied low at all times). This format is sometimes preferred in systems having a single fixed master and a single slave driving the MISO data line.

Figure 15.7 Write Collision Error – SPI Slave mode – SPDR write during transfer



#### **15.6.4 CPHA EQUALS ONE TRANSFER FORMAT**

Figure below is a timing diagram of an SPI transfer where CPHA = 1. Two waveforms are shown for SCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the SCK, MISO, and MOSI pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave; the SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as a general -purpose output not affecting the SPI.



#### **15.7 SPI DATA TRANSFER**

#### 15.7.1 TRANSFER BEGINNING PERIOD (INITIATION DELAY)

All SPI transfers are started and controlled by a master SPI device. As a slave, the SPI MODULE considers a transfer to begin with the first SCK edge or the falling edge of SS, depending on the CPHA format selected. When CPHA = 0, the falling edge of SS indicates the beginning of a transfer. When CPHA = 1, the first edge on the SCK indicates the start of the transfer. In either CPHA format, a transfer can be aborted by taking the SS line high, which causes the SPI slave logic and bit counters to be reset. The SCK rate selected has no effect on slave operations since the clock from the master is controlling transfers.

When the SPI is configured as a master, transfers are started by a software write to the SPDR.

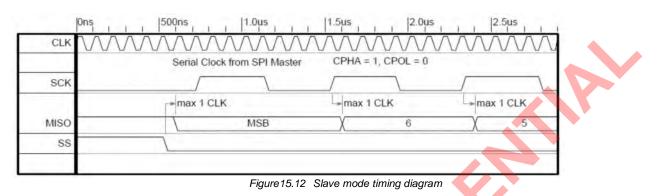
#### **15.7.2 TRANSFER ENDING PERIOD**

An SPI transfer is technically complete when the SPIF flag is set, but, depending on the configuration of the SPI system, there may be additional tasks. Because the SPI bit rate does not affect timing of the ending period, only the fastest rate is considered in discussions of the ending period. When the SPI is configured as a master, SPIF is set at the end of the eighth SCK cycle. When CPHA equals 1, SCK is inactive for the last half of the eighth SCK cycle.

When the SPI is operating as a slave, the ending period is different because the SCK line can be asynchronous to the MCU clocks of the slave and because the slave does not have access to as much information about SCK cycles as the master. For example, when CPHA = 1, where the last SCK edge occurs in the middle of the eighth SCK cycle, the slave has no way of knowing when the end of the last SCK cycle is. For these reasons, the slave considers the transfer complete after the last bit of serial data has been sampled, which corresponds to the middle of the eighth SCK cycle.

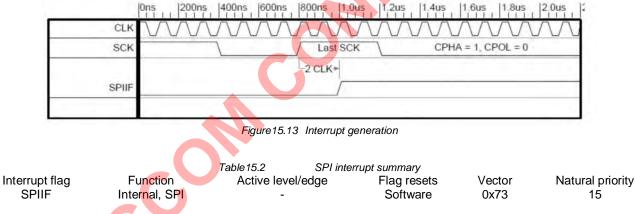
The SPIF flag is set at the end of a transfer, but the slave is not permitted to write new data to the SPDR while the SS line is still low.

## **15.8 TIMING DIAGRAMS**


#### 15.8.1 MASTER TRANSMISSION

| Ons      | 500ns  1.0us  1.5us              | 2.0us  2.5us              | 3.0us  3.5us        |
|----------|----------------------------------|---------------------------|---------------------|
|          |                                  |                           | $\sim$              |
|          | ⇔Transfer begins                 |                           | ⊕Transfer ends      |
| SCK      |                                  |                           |                     |
|          |                                  | CPOL = 0                  |                     |
| MOSI     | MSB X                            |                           | $ \longrightarrow $ |
|          | 1 CLK                            |                           | L+1 CLK             |
| SS_Lines | SCK and Data (MO) transfer begin | ns at the same rising edg | e of CLK            |
|          |                                  |                           |                     |




#### Figure 15.11 Master mode timing diagram

**15.8.2 SLAVE TRANSMISSION** At a beginning of transfer in Slave mode, the data on serial output (MISO) appears on first rising edge after falling edge on Slave Select (SS) line. Next bits of serial data are driving into MISO line on first rising edge of CLK after SKC active edge (in this case rising edge of SCK).



## **15.9 SPI MODULE INTERRUPT GENERATION**

When interrupt is enabled (SPIE bit in SPCR=1), SPI interrupt flag is automatically asserted when SPI transfer is completed or transfer error has occurred. SPIIF flag has to be cleared by software.



SPI related interrupt bits have been summarized below. The IE (0xA8) contains global interrupt system disable (0) / enable (1) bit called EA.

EIE (0xE8)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| E8h<br>EIE   | R/W | EI2CS<br>ESPI | EI2CM | EWDI  | EINT6 | EINT5 | EINT4 | EINT3 | EINT2 |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### ESPI : Enable SPI Interrupts

EIP (0xF8)

| Address/Name | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
| F8h<br>EIP   | R/W | PI2CS<br>PSPI | PI2CM | PWDI  | PINT6 | PINT5 | PINT4 | PINT3 | PINT2 |
| Reset        |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |



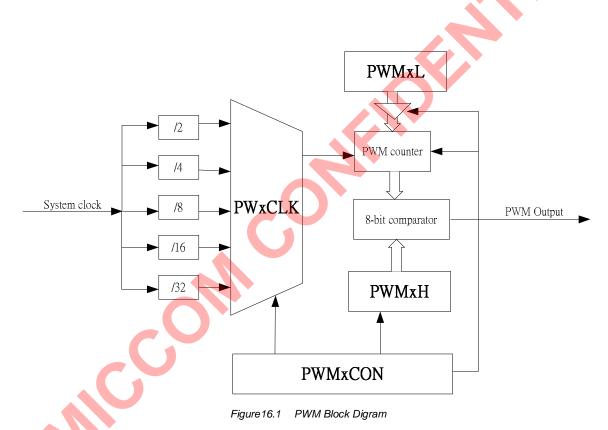
#### PSPI : SPI priority level control (at 1-high-level)

EIF (0x91)

| (0x91)                    |                   |     |               |       |       |       |       |       |       |       |
|---------------------------|-------------------|-----|---------------|-------|-------|-------|-------|-------|-------|-------|
|                           | Address/Name      | R/W | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|                           | 91h<br>EIF        | R/W | I2CSF<br>SPIF | I2CMF | -     | INT6F | INT5F | INT4F | INT3F | INT2F |
|                           | Reset             |     | 0             | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| SPI intern<br>Must be cle | eared by software |     |               |       | 5     |       |       |       |       |       |

SPIIF : SPI interrupt flag




## <u>16. PWM</u>

A8105 has two channels Pulse width modulator (PWM) output. Every channel PWM has an 8-bit counter with comparator, a control register (PWMxCON) and two setting registers (PWMxH and PWMxL). User can select clock source by setting PWMxCON. Enable PWM output and function by setting PWMxEN = 1; otherwise disable PWM output and function by setting PWMxEN = 0. When user set PWMxEN=0, it output LOW single and reload the PWMxL to itself. When the counter is enabled and matches the content of PWMxH, its output is asserted HIGH; when the counter is overflow, its output is asserted LOW and reload PWMxL to itself. The pulse frequency and the duty cycle for 8-bit PWM is given by the below equation

Pulse frequency = System clock / 2<sup>pwxclk+1</sup> / (255-PWMxL) Duty cycle = (255-PWMxH) / 255-PWMxL)

Noted: PWMxH must be larger then PWMxL. Otherwise, PWM output always is LOW.

#### **16.1 PWM FUNCTIONALITY**



The PWM pins functionality is described in the following table. All pins are one directional.

| PIN        | ACTIVE   | TYPE       | DESCRIPTION  |
|------------|----------|------------|--------------|
| PWM0(P3.6) |          | OUTPUT     | PWM 0 output |
| PWM1(P3.7) |          | OUTPUT     | PWM 1 output |
|            | able16.1 | PWM PIN de | fine         |

#### 16.1.1 PWM Registers

PWM0/1 is new design from AMICCOM. They can output pulse width modulation. User adjusts to duty cycle by setting PWMxH. PWM counter is up counter. PWM counter is not access directly by MCU. User can set or reset PWM counter by setting PWMxCON. When PWMxEN =1, PWM counter start to count. When PWMxEN=0, PWM counter stop counting and reload PWMxL to itself. PWxCLK is clock divider. It divide system clock to 2,4,8,16 and 32 by setting PWxCLK.

| Address/Name   | R/W |        | Bit<br>6 | Bit<br>5 | Bit<br>4 | Bit<br>3 | Bit 2   | Bit 1   | Bit 0   |
|----------------|-----|--------|----------|----------|----------|----------|---------|---------|---------|
| A9h<br>PWM0CON | R/W | PWM0EN | -        | -        | -        | -        | PW0CLK2 | PW0CLK1 | PW0CLK0 |



| Reset       0       0       0       0       0       0       0       0       0         PWM0CON: PWM channel 0 control register         Address/Name       R/W       Bit 7       Bit 6       Bit 5       Bit 4       Bit 3       Bit 2       Bit 1       Bit 0         AAh       PWM0H       R/W       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address/Name       R/W       Bit 7       Bit 6       Bit 5       Bit 4       Bit 3       Bit 2       Bit 1       Bit 0         AAh<br>PWM0H<br>Reset       R/W       0       0       0       0       0       0       0       0         PWM0H<br>Reset       0       0       0       0       0       0       0       0       0         PWM0H<br>Reset       R/W       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AAh<br>PWM0H<br>Reset       R/W       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PWM0H<br>Reset         R/W         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reset         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Address/NameR/WBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0ABh<br>PWM0L<br>ResetR/W00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABh<br>PWM0L<br>Reset         R/W         Image: Constraint of the sector of th |
| PWM0L R/W 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T WINDL. T WIN Channel O nequency setting register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address/Name R/W Bit 7 6 5 4 3 Bit 2 Bit 1 Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B0h<br>PWM1CON R/W PWM1EN PW1CLK2 PW1CLK1 PW1CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reset     0     0     0     0     0     0       PWM1CON: PWM channel 1 control register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address/Name R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B1h<br>PWM1H R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reset 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PWM1H: PWM channel 1 output HIGH register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address/Name R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0<br>B2h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PWM1L<br>Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



# 17. ADC (Analog to Digital Converter)

A8105 has built-in 8-bits ADC do RSSI measurement as well as carrier detection function. THe ADC clock (F<sub>ADC</sub>) is 4MHz. The ADC converting time is 20 x ADC clock periods.

| В    | it  | N       | lode                  |
|------|-----|---------|-----------------------|
| XADS | RSS | Standby | RX                    |
| 0    | 1   | None    | RSSI / Carrier detect |

Table 17.1 Setting of ADC function

#### **Relative Control Register**

Mode Control Register (Address: 0802h)

| Bit   | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| Name  | R   | DDPC  | ARSSI | AIF   | CD    | WWSE  | FMT   | FMS   | ADCM  |
| Name  | W   | DDPC  | ARSSI | AIF   | DFCD  | WWSE  | FMT   | FMS   | ADCM  |
| Reset |     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

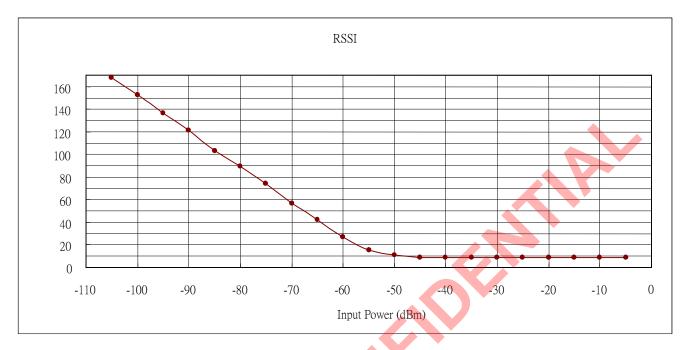
ADC Register (Address: 0821h)

| Name           | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| RSSI Threshold | R   | ADC7  | ADC6  | ADC5  | ADC4  | ADC3  | ADC2  | ADC1  | ADC0  |
| KSSI Milesholu | W   | RTH7  | RTH6  | RTH5  | RTH4  | RTH3  | RTH2  | RTH1  | RTH0  |
| Reset          |     | 1     | 0     | 0     | 1     | 0     | 0     | 0     | 1     |

#### ADC Control Register (Address: 0822h)

| Name        | R/W | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| ADC Control | W   | RSM1  | RSM0  | ERSS  | FSARS |       | XADS  | RSS   | CDM   |
| Reset       |     | 0     | 1     | 0     | 1     |       | 0     | 1     | 1     |

## 17.1 RSSI Measurement

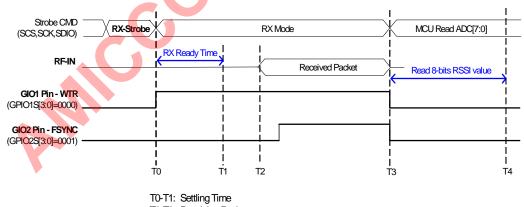

A8105 supports 8-bits digital RSSI to detect RF signal strength. RSSI value is stored in ADC [7:0] (1Dh). Fig 17.1 shows a typical plot of RSSI reading as a function of input power. This curve is base on the current gain setting of A8105 reference code. A8105 automatically averages 8-times ADC conversion a RSSI measurement until A8105 exits RX mode. Therefore, each RSSI measuring time is ( 8 x 20 x F<sub>ADC</sub>). Be aware RSSI accuracy is about ± 6dBm.

100



# A8105

# 2.4GHz FSK/GFSK SOC




## Figure 17.1 Typical RSSI characteristic.

#### Auto RSSI measurement for TX Power:

- 1. Set wanted F<sub>RXLO</sub> (Refer to chapter 14).
- 2. Set RSS= 1 (1Eh), FSARS= 0 (1Eh, 4MHz ADC clock).
- 3. Enable ARSSI= 1 (01h).
- 4. Send RX Strobe command.
- 5. In RX mode, 8-times average a RSSI measurement periodically.
- 6. Exit RX mode, user can read digital RSSI value from ADC [7:0] (1Dh) for TX power.

In step 6, if A8105 is set in direct mode, MCU shall let A8105 exit RX mode within 40 us to prevent RSSI inaccuracy.



T2-T3: Receiving Packet

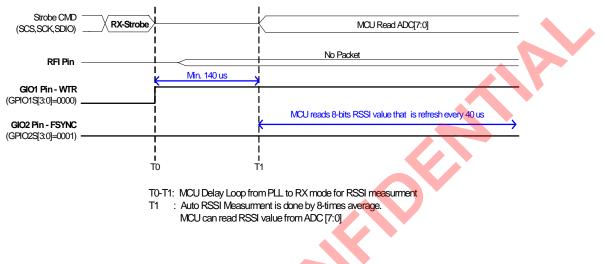

- T3 : Exit RX mode automatically in FIFO mode
- T3-T4: MCU read RSSI value @ ADC [7:0]

Figure 17.2 RSSI Measurement of TX Power.

- Auto RSSI measurement for Background Power:
- 1. Set wanted F<sub>RXLO</sub> (Refer to chapter 14).
- 2. Set RSS= 1 (1Eh), FSARS= 0 (1Eh, 4MHz ADC clock).
- 3. Enable ARSSI= 1 (01h).



- 4. Send RX Strobe command.
- 5. MCU delays min. 140us.
- 6. Read digital RSSI value from ADC [7:0] (1Dh) to get background power.
- 7. Send other Strobe command to let A8105 exit RX mode.





#### **17.2 Carrier Detect**

Base on RSSI measurement, user can extend its application to do carrier detect (CD). In Carrier Detect mode, RSSI is refresh every 5 us without 8-times average. If RSSI level is below threshold level (RTH), CD is output high to GIO1 or GIO2 pin to inform MCU that current channel is busy.

Below is a reference procedure:

- 1. Set CDTH (0821h) for absolute RSSI threshold level (ex. RTH = 80d).
  - Set GIO2S = [0010] (080Eh) for Carrier Detect to GIO2 pin.
    - (2-1) Set wanted F<sub>RXLO</sub> (Refer to chapter 14).
    - (2-2) Set RSM= [11] (0822h, CDM =0 and hysteresis =6, or CDM =1 and hysteresis =12).
    - (2-3) Enable ARSSI= 1 (01h).
    - (2-4) Send RX Strobe command.
    - (2-5) MCU enables a timer delay (min. 100 us).
- 3. MCU checks GIO2 pin.
  - (3-1) If ADC  $\geq$  CDTH, GIO2 = 0.
  - (3-2) If ADC  $\leq$  CDTH-CDM, GIO2 = 1.
  - (3-3) If ADC locates in hysteresis zone, GIO2 = previouse state.
- 4. Exit RX mode.

2.



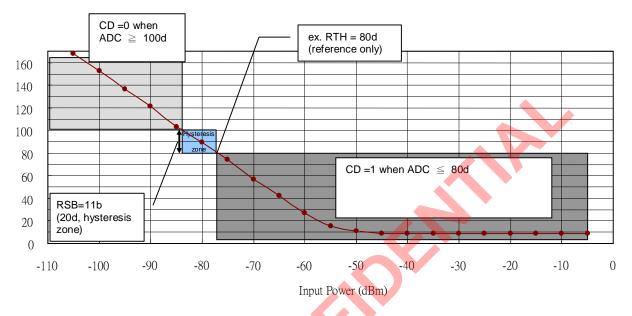



Figure 17.4 Carrier Detect Zone, a reference setting only.

# 18. Battery Detect

A8105 has a built-in battery detector to check supply voltage (REGI pin). The detecting range is 2.0V ~ 2.7V in 8 levels.

## **Relative Control Register**

| Battery detect Registe | er (Aut | liess. 0620 | <i>i</i> n) |       |       |       |       |       |       |
|------------------------|---------|-------------|-------------|-------|-------|-------|-------|-------|-------|
| Name                   | R/W     | Bit 7       | Bit 6       | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Battery detect         | R       |             |             |       |       |       |       |       | BDF   |
|                        | W       | ATP1        | ATP0        | QDS   | BLE   | BDS1  | BDS0  | BGS   | BDE   |
| Reset                  |         | 0           | 0           | 0     |       | 0     | 1     | 1     | 0     |

Battery detect Register (Address: 082Ch)

**BDS[1:0]: Battery detection threshold.** [00]: 2.0V. [01]: 2.2V. [10]: 2.4V. [11]: 2.6V. When REGI < Threshold, BDF= low. When REGI > Threshold, BDF= high.

Below is the procedure to detect low voltage input (ex. below 2.1V):

- 1. Set A8105 in standby or PLL mode.
- 2. Set BDS[1:0] (082Ch) = [001] and enable BDE (082Ch) = 1.
- 3. After 5 us, BDE is auto clear.
- MCU reads BDF (082Ch).
   If REGI pin > 2.1V,
   BDF = 1 (battery high). Else, BDF = 0 (battery low).



# **19 Power Management**

Low power operation is enabled through different power modes setting. A8105 has various operating mode are referred as normal mode, low power mode and ultra low power mode, power down and Stop mode. Table 19.1 shows the impact of different power modes on systems operation.

|                 | CPU speed   | 16MHz | Internal RC | RTC | Back to Normal   | LVR | RF        |
|-----------------|-------------|-------|-------------|-----|------------------|-----|-----------|
| Normal          | 16MHz       | V     | V           | V   | Х                | V   | ALL       |
|                 | 8/4/2/1 MHz |       |             |     |                  |     |           |
| Low Power       | IRC/RTC     | V     | V           | V   | Interrupt        | V   | ALL       |
|                 |             |       |             |     | Interrupt        |     |           |
| Ultra low power | Х           | Х     | V           | V   | Key/ Sleep timer | V   | WOR/Sleep |
|                 |             |       |             |     | Interrupt        |     |           |
| Power down      | Х           | Х     | Х           | Х   | KEY              | V*  | Sleep     |
|                 |             |       |             |     | Reset            |     |           |
| Stop            | Х           | Х     | Х           | Х   | Кеу              | X   | Sleep     |
|                 |             |       |             |     |                  |     |           |

| Table 1 | 9 1 Po | wer mode |
|---------|--------|----------|

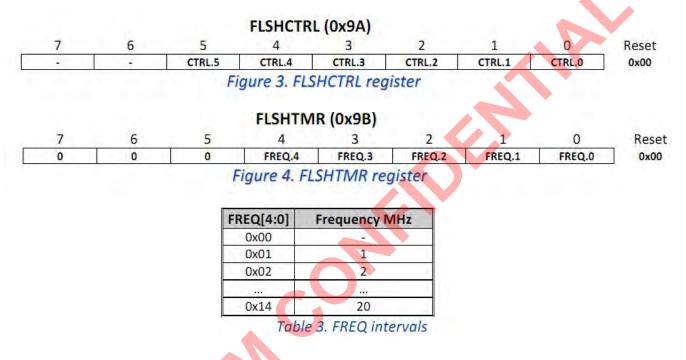
Table 10.4 Power manager

|            |             |       | Internal |     | RAM |                     |     |           |
|------------|-------------|-------|----------|-----|-----|---------------------|-----|-----------|
|            | CPU speed   | 16MHz | RC       | RTC |     | Back to Normal      | LVR | RF        |
| Normal     | 16MHz       | V     | V        | V   | V   | Х                   | V   | ALL       |
|            | 8/4/2/1 MHz |       |          |     | V   | Interrupt / mode    |     |           |
| PMM        | IRC/RTC     | V     | V        | V   |     | switch              | V   | ALL       |
|            |             |       |          |     | V   | H/W reset / wakeup  |     |           |
| Idle       |             |       |          |     |     | key / Interrupt     |     |           |
| (PM1)      | Х           | Х     | V        | V   |     | Key / Sleep timer   | V   | WOR/Sleep |
| Sleep      |             |       |          |     | V   | H/W reset / wakeup  |     |           |
| (PM2)      | Х           | Х     | X        | Х   |     | key / Interrupt KEY | V*  | Sleep     |
| Deep Sleep |             |       |          |     | ?   | Reset               |     |           |
| (PM3)      | Х           | X     | Х        | Х   |     | Key Reset           | Х   | Sleep     |

There are two register to setting power manager. One is power manager control (PCON, 0x



# MICCOM 20 A8105 RF


June 2012, Version 0.0



## 21. Flash memory controller

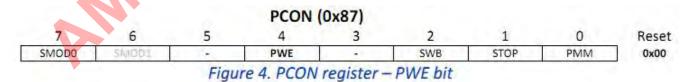
#### SFR RELATED REGISTERS

FLASH memory is controlled using PCON(0x87)'s PWE bit, FLASHCTRL(0x9A) and FLASHTMR (0x9B). An SFR register named FLASHCTRL (0x9A) is used to control communication between CPU and flash. FLSHCTRL(0x9A) is consisted of 6bits used to control all FLASH related operations. Lower five bits of FLSHTMR (0x9B) named FREQ[4:0] determine real CLK frequency with 1MHz step resolution. FREQ[4:0] after reset is set to 20MHz by default, provides optimal timing for flash marco.



Setting higher clock frequency is not supported since given flash has limited its clock frequency up to 20 MHz by Tkp read cycle time. FLASHCTRL register is write protected by TA enable procedure listed below:

CLR EA ; disable interrupt system


MOV TA, #0xAA

MOV TA, #0x55

MOV FLASHCTRL,#<value>; Any direct addressing instruction writing FLASHCTRL register.

SETB EA ;Enable interrupt system

The Program Write Enable (PWE) bit, located in PCON register, is used to enable/disable PRGROMWR and PRGRRAMWR pin activity during MOVX instructions.



When PWE bit is set to logic 1, the MOVX @DPTR,A instruction writes data located in accumulator register i nto Program Memory addressed by DPTR register (active :DPH:DPL). The MOVX @Rx,A instruction writes data located in accumulator register into program memory addressed by P2 register (bits 15:8) and Rx register (bits 7:0). Program Memory can be read by MOVC only regardless of PWE bit.

#### CHIP ERASE OPERATION

Chip erase operation is enabled by setting CTRL[5:0]=0x04 of FLSHCTRL register according to CPU TA enable procedure. P CON.PWE bit must be set too, then first MOVX instruction writing to program memory space at address belong to certain FLA

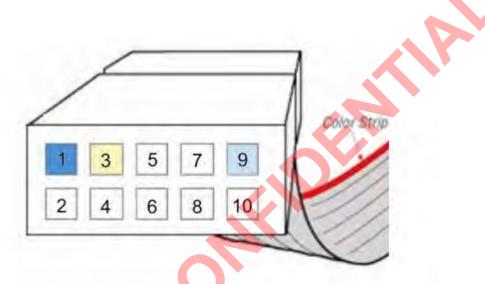


SH macro begins sector erase operation. During erase operation CPU is halted by asserting FLASHBUSY pin. When FALSH macro has been erased. FLASHBUSY pin id deactivated and FNOP is automatically written. CPU executes next instruction. CMT FLASH macro is blank and ready for new programming. To erase another FLASH macro the whole procedure needs to be repeated with changed MOVX address pointing to certain FLASH macro. Preprograming of whole FLASH macro is executed automatically without any interaction with user, before real chip erase. It extends lifecycle of CMT FLASH macro.

#### SECTOR ERASE OPERATION

The 16kB CMT FLASH macro has 128 sectors (128B each) which can be erased separately. Sector erase operation is enabled by setting CTRL[5:0]=0x02 of FLSHCTRL register according to CPU TA enable procedure . PCON.PWE bit must be set to o, then first MOVX instruction writing to program memory space at selected sector address begins sector erase operation. During sector erase operation CPU is halted by asserting FLASHBUSY pin. When sector has been erased FLASHBUSY pin is deactivated and FNOP is automatically written. CPU executes next instruction. Selected CMT FLASH macro sector(s) is bl ank and ready for new programming. To erase another sectors whole procedure needs to be repeated. Preprograming of who le sector is executed automatically without any interaction with user, before real sector erase. It extend lifecycle of CMT FLASH macro.

#### PROGRAM OPERATION


Word program operation is enabled by setting CTRL[5:0]=0x01 of FLSHCTRL register according to CPU TA enable procedure. PCON.PWE bit must be set too, then each write to program memory space by MOVX instruction addressing odd byte begins word program operation. During program operation CPU is halted by asserting FLASHBUSY pin. When word has been programmed FLASHBUSY pin is deactivated. CPU executes next instruction which can be (i) programming of next memory word (ii) CTRL[5:0] = 0x00 according to CPU TA enable procedure. Number of programmed by bytes must be always even number(2,4,6...). For example to program byte at address 0x003, first must be written byte at address 0x002 then second MOVX instruction write at address 0x003 begins physical write to CNT FLASH macro. When number of programmed bytes i s not even then it must be filled with extra neutral byte - for FLASH macro. When number of program any bit in a FLASH macro.



# 22 In Circuit Emulator (ICE)

A8153 support In Circuit Emulator on chip. It is a real-time hardware debugger as a non-intrusive system. It doesn't need to occupy any hardware resource such as the UART and Timer. User develops firmware complete producing code without any modification using ICE. It helps user to track down hidden bugs within the application running with microcontroller. The ICE with Hardware USB dongle provides a powerful SOC development tool with silicon using 2-wire protocol. The ICE fully supports Keil uVision2/3/4 interface to hardware debuggers. It allows Keil software user to work with uvision2/3/4. For more detail information, please reference Application note.

## 22.2 PIN define



## Fig 22.1 The USB connectors

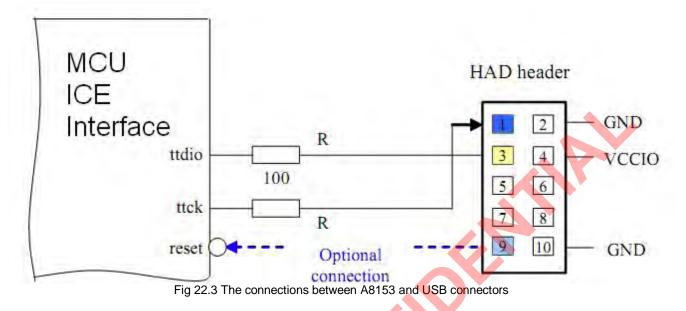

| Pin | Signal name | Description       | Pin | Signal<br>name | Description             |
|-----|-------------|-------------------|-----|----------------|-------------------------|
| 1   | ttck        | Clock signal (in) | 2   | GND            | Signal Ground           |
| 3   | ttdio       | Data (io)         | 4   | VCCIO          | Used to VCCIO detection |
| 5   | NU          | Do not use        | 6   | NU             | Do not use or connect   |
| 7   | NU          | Do not use        | 8   | NU             | Do not use or connect   |
| 9   | rsto        | Reset output (od) | 10  | GND            | Signal Ground           |

Fig22.2 The Pin define within USB connector

Note: RSTO pin is open drain (od) type active low. It forces logic zero to issue reset. When RSTO is inactive its output is floating, and should be connected to global system reset with pull-up resistor. This pin can be left unconnected.

There are 10 pin in the ICE connectors. 2-wire ICE only use 2 pins (PIN1 and PIN3). The PIN9 is optional and it can connects reset signal. PIN2 and PIN10 are GND pin. PIN4 is VCCIO pin. The recommended circuit shows as the below figure. (Fig21.3). There is a resister (100 ohm) between A8510 and pin connected the connector.





## 22.2 ICE Key feature

The ICE supports source level debugging, 2 hardware breakpoint, auto refresh of all register and In system programming (ISP). User can use ICE to download firmware by Keil software or AMICCOM tool.



# 23. Application circuit

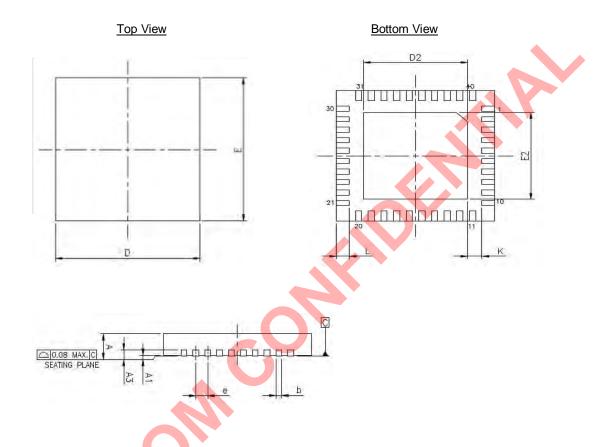
Below are AMICCOM's ref. design module, MD8105, circuit example and its PCB layout.

MICCOM



# 24. Abbreviations

| ADC<br>AIF<br>FC<br>AGC<br>BER<br>BW<br>CD<br>CHSP<br>CRC<br>DC<br>FEC<br>FIFO<br>FSK<br>ID<br>ICE<br>IF<br>ISM<br>LO<br>MCU<br>PFD<br>PLL<br>POR<br>PWM<br>RX<br>RXLO<br>RSSI<br>SPI<br>SYCK | Analog to Digital Converter<br>Auto IF<br>Frequency Compensation<br>Automatic Gain Control<br>Bit Error Rate<br>Bandwidth<br>Carrier Detect<br>Channel Step<br>Cyclic Redundancy Check<br>Direct Current<br>Forward Error Correction<br>First in First out<br>Frequency Shift Keying<br>Identifier<br>In Circuit Emulator<br>Intermediate Frequency<br>Industrial, Scientific and Medical<br>Local Oscillator<br>Micro Controller Unit<br>Phase Frequency Detector for PLL<br>Phase Lock Loop<br>Power on Reset<br>Pulse width modulation<br>Receiver<br>Receiver Local Oscillator<br>Receiver Cocal Oscillator<br>Receiver Local Oscillator<br>Receiver Cocal Oscillator<br>Receiver Cocal Oscillator<br>Receiver Cocal Oscillator<br>Receiver Cocal Oscillator<br>Receiver Cocal Oscillator<br>Receiver Cocal Oscillator |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RX                                                                                                                                                                                            | Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SYCK                                                                                                                                                                                          | System Clock for digital circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ТХ                                                                                                                                                                                            | Transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TXRF                                                                                                                                                                                          | Transmitter Radio Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VCO                                                                                                                                                                                           | Voltage Controlled Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XOSC                                                                                                                                                                                          | Crystal Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                               | tal Reference frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| XTAL                                                                                                                                                                                          | Crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

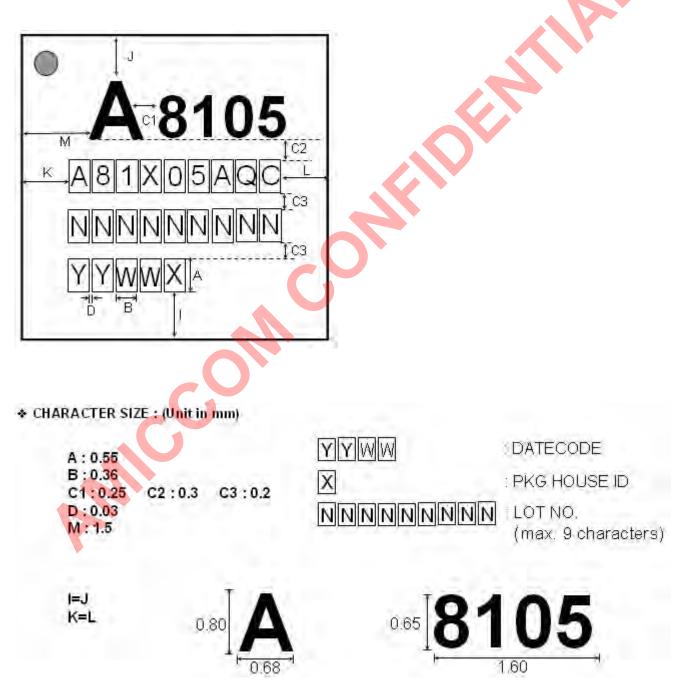

# 25. Ordering Information

| Part No.     | Package                                                                            | Units Per Reel / Tray |
|--------------|------------------------------------------------------------------------------------|-----------------------|
| A85X01AQCI/Q | QFN40L, Pb Free, Tape & Reel, -40 $^\circ\!\mathrm{C}\!\sim\!85^\circ\!\mathrm{C}$ | ЗК                    |
| A85X01AQCI   | QFN40L, Pb Free, Tray, -40 $^\circ\!\!\mathbb{C}\!\sim\!85^\circ\!\!\mathbb{C}$    | 490EA                 |
| A85X01AH     | Die form, -40°C $\sim$ 85°C                                                        | 100EA                 |



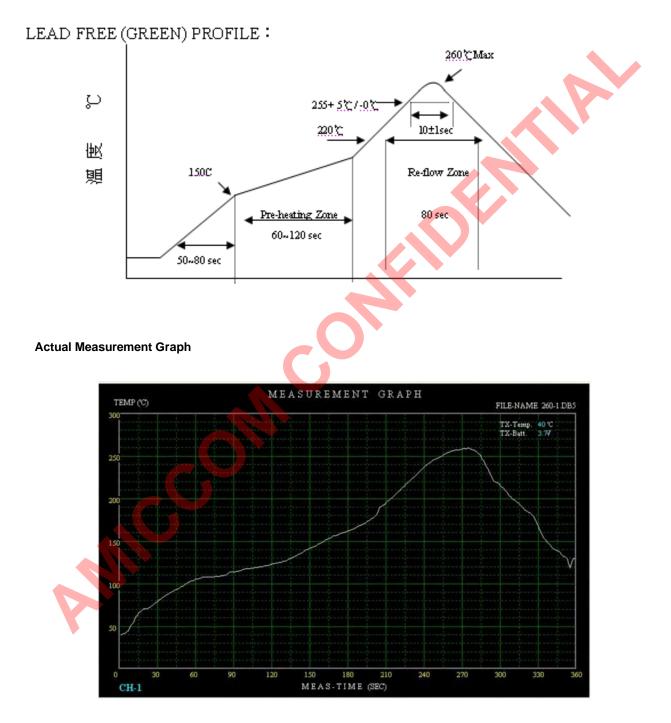
# 26. Package Information

#### QFN 40L (5 X 5 X 0.8mm) Outline Dimensions




| Syr | mbol           | Dim       | ensions in inc | ches  | Dimensions in mm |      |       |  |
|-----|----------------|-----------|----------------|-------|------------------|------|-------|--|
|     |                | Min       | Nom            | Max   | Min              | Nom  | Max   |  |
|     | A              | 0.028     | 0.030          | 0.031 | 0.70             | 0.75 | 0.80  |  |
|     | A1             | 0.000     | 0.001          | 0.002 | 0.00             | 0.02 | 0.05  |  |
|     | 4 <sub>3</sub> | 0.008 REF |                |       | 0.20 REF         |      |       |  |
|     | b              | 0.006     | 0.008          | 0.010 | 0.15             | 0.20 | 0.25  |  |
|     | D              | 0.194     | -              | 0.200 | 4.924            | -    | 5.076 |  |
| [   | D₂             | 0.126     | -              | 0.138 | 3.20             | -    | 3.50  |  |
|     | E              | 0.194     |                | 0.200 | 4.924            |      | 5.076 |  |
| E   | E2             | 0.126     | -              | 0.138 | 3.20             | -    | 3.50  |  |
|     | е              | 0.016     |                |       | 0.40             |      |       |  |
|     | L              | 0.013     | 0.016          | 0.019 | 0.324            | 0.40 | 0.476 |  |
|     | k              |           | 0.008          |       |                  | 0.2  |       |  |

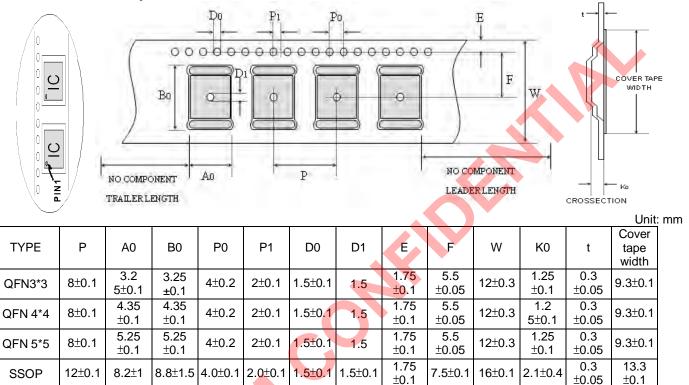



# 27. Top Marking Information

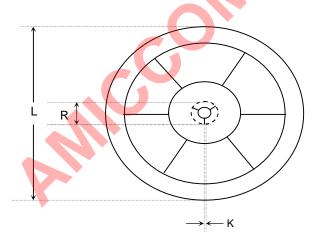
- Part No. : A81X05AQCI
- Pin Count : **40**
- Package Type : QFN
- Dimension : 5\*5 mm
- Mark Method : Laser Mark
- Character Type : Arial

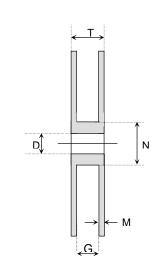





# 28. Reflow Profile







# 29. Tape Reel Information

## **Cover / Carrier Tape Dimension**



# **REEL DIMENSIONS**





Unit: mm

| TYPE | G        | Ν           | М       | D          | к       | L       | R        |
|------|----------|-------------|---------|------------|---------|---------|----------|
| QFN  | 12.9±0.5 | 102 REF±2.0 | 2.3±0.2 | 13.15±0.35 | 2.0±0.5 | 330±3.0 | 19.6±2.9 |
| SSOP | 16.3±1   | 102 REF±2.0 | 2.3±0.2 | 13.15±0.35 | 2.0±0.5 | 330±3.0 | 19.6±2.9 |



# 30. Product Status

| Data Sheet Identification | Product Status                              | Definition                                                                                                                                                                                                                                                 |
|---------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                 | Planned or Under Development                | This data sheet contains the design specifications<br>for product development. Specifications may<br>change in any manner without notice.                                                                                                                  |
| Preliminary               | Engineering Samples<br>and First Production | This data sheet contains preliminary data, and<br>supplementary data will be published at a later<br>date. AMICCOM reserves the right to make<br>changes at any time without notice in order to<br>improve design and supply the best possible<br>product. |
| No Identification         | Noted Full Production                       | This data sheet contains the final specifications.<br>AMICCOM reserves the right to make changes at<br>any time without notice in order to improve design<br>and supply the best possible product.                                                         |
| Obsolete                  | Not In Production                           | This data sheet contains specifications on a product that has been discontinued by AMICCOM. The data sheet is printed for reference information only.                                                                                                      |
|                           |                                             |                                                                                                                                                                                                                                                            |



Headquarter A3, 1F, No.1, Li-Hsin 1<sup>st</sup> R

A3, 1F, No.l, Li-Hsin 1<sup>st</sup> Rd., Hsinchu Science Park, Hsinchu, Taiwan 30078 Tel: 886-3-5785818

# Shenzhen Office

Rm., 2003, DongFeng Building, No. 2010, Shennan Zhonglu Rd., Futian Dist., Shenzhen, China Post code: 518031

## Web Site

http://www.amiccom.com.tw



RF ICs AMICCOM