

Description

ACE2358M uses advanced trench technology to provide excellent R_{DS(ON)}.

This device particularly suits for low voltage application such as power management of desktop computer or notebook computer power management, DC/DC converter.

Features

- Low r_{DS(on)} trench technology
- Low thermal impedance
- Fast switching speed

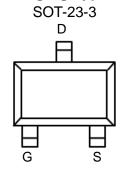
Applications

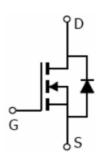
- White LED boost converters
- Automotive Systems
- Industrial DC/DC Conversion Circuits

Absolute Maximum Ratings

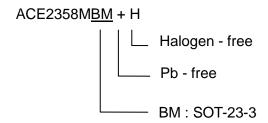
Parameter		Symbol	Limit	Units	
Drain-Source Voltage		V_{DS}	60	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current a	T _A =25°C		3.1	А	
	T _A =70°C	- I _D	2.5		
Pulse Drain Current ^b		I _{DM}	1.5	Α	
Continuous Source Current (Diode	Conduction) ^a	I _S	1.9	Α	
Power Dissipation ^a	T _A =25°C	D	1.3	W	
	T _A =70°C	- P _D	0.8		
Operating Temperature / Storage Temperature		T _J /T _{STG}	-55/150	°C	

^{*1} Pw \leq 10 μ s, Duty cycle \leq 1 %


THERMAL RESISTANCE RATINGS


Parameter		Symbol	Maximum	Units
Maximum Junction-to-Ambient ^a	t <= 10 sec	Ь	100	°C/W
	Steady State	$R_{\theta JA}$	166	C/VV

^{*2} When mounted on a 1*0.75*0.062 inch glass epoxy board%

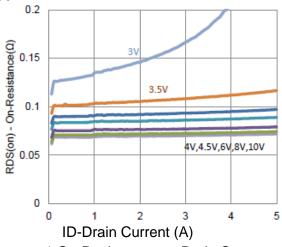


Packaging Type

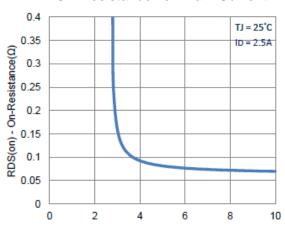
Ordering information

Electrical Characteristics

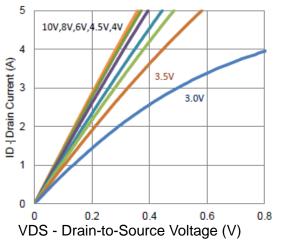
(T_A=25°C, unless otherwise specified)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
		Static					
Gate-Source Threshold Voltage	VGS(th)	V _{DS} = V _{GS} , I _D = 250 uA	1			V	
Gate-Body Leakage	VGS(th)	V _{DS} = 0 V, V _{GS} = ±20 V			±100	uA	
7 0 1 1/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	Vps = 48 V, Vgs = 0 V			1	^	
Zero Gate Voltage Drain Current	IDSS	Vps = 48 V, Vgs = 0 V, Tj = 55°C			25	uA	
On-State Drain Current a	ID(on)	V _{DS} = 5 V, V _{GS} = 10 V	5			Α	
Drain-Source On-Resistance a	·DO()	Vgs = 10 V, ID = 2.5 A			92	mΩ	
	rDS(on)	Vgs = 4.5 V, ID = 2 A			107		
Forward Transconductance a	gfs	V _{DS} = 15 V, I _D = 2.5 A		10		S	
Diode Forward Voltage a	VSD	Is = 1 A, Vgs = 0 V		0.74		V	
		Dynamic b					
Total Gate Charge	Qg			4		nC	
Gate-Source Charge	Qgs	$V_{DS} = 30 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 2.5 \text{ A}$		1.0			
Gate-Drain Charge	Qgd			1.7			
Turn-On Delay Time	t _{d(on)}			3			
Rise Time	t r	$V_{DS} = 30 \text{ V}, R_L = 12 \Omega, I_D = 2.5 \text{ A},$		6		nS	
Turn-Off Delay Time	t _{d(off)} *	$V_{GEN} = 10 \text{ V}, R_{GEN} = 6 \Omega$		17			
Fall Time	t _f			5			
Input Capacitance	C _{iss}			330			
Output Capacitance	C _{oss}	VDS = 15 V, VGS = 0 V, f = 1 MHz		31		pF	
Reverse Transfer Capacitance	C_{rss}			27			

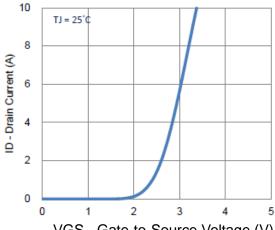
Notes


- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

Typical Performance Characteristics

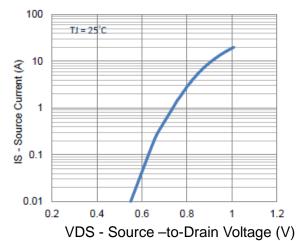


1.On-Resistance vs. Drain Current

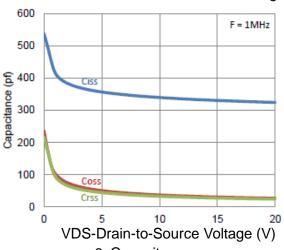


VGS - Gate-to-Source Voltage (V)

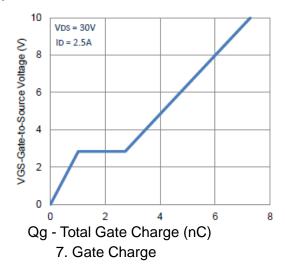
3. On-Resistance vs. Gate-to-Source Voltage

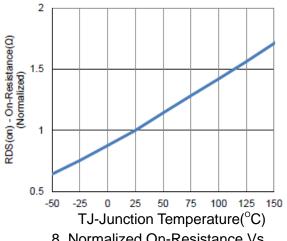


5. Output Characteristics

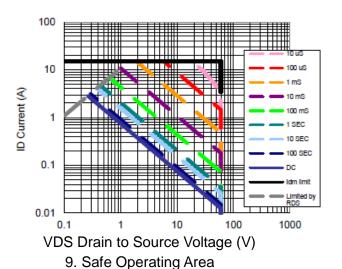


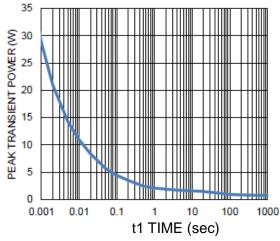
VGS - Gate-to-Source Voltage (V)

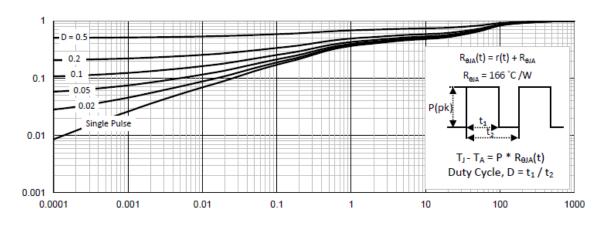

4. Drain-to-Source Forward Voltage



6. Capacitance

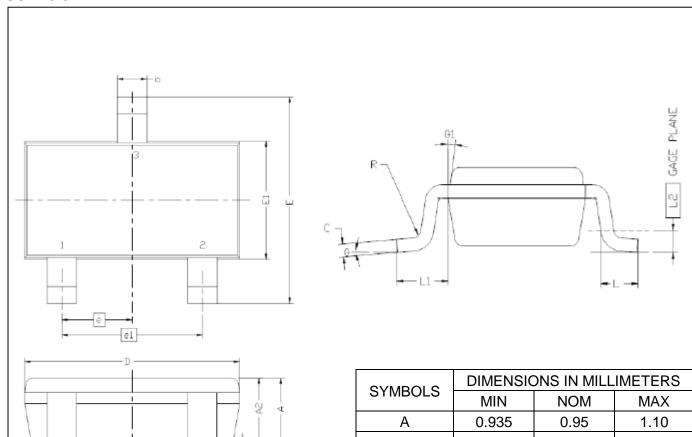



Typical Performance Characteristics



8. Normalized On-Resistance Vs Junction Temperature

10. Single Pulse Maximum Power Dissipation


t1 TIME (sec)

11. Normalized Thermal Transient Junction to Ambient

5

SOT-23-3

SYMBOLS	DIMENSIONS IN MILLIMETERS			
STIVIBULS	MIN	NOM	MAX	
Α	0.935	0.95	1.10	
A1	0.01		0.10	
A2	0.85	0.90	0.925	
В	0.30	0.40	0.50	
С	0.10	0.15	0.25	
D	2.70	2.90	3.10	
E	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
е	0.95BSC			
e1	1.90BSC			
L	0.30	0.40	0.60	
L1	0.60REF			
L2	0.25BSC			
R	0.10			
Θ	0°	4°	8°	
Θ1	7°NOM			

Unit: mm

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/