

Dual P-Channel Enhancement Mode MOSFET

Description

The ACE4908A is the Dual P-Channel enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance and provide superior switching performance.

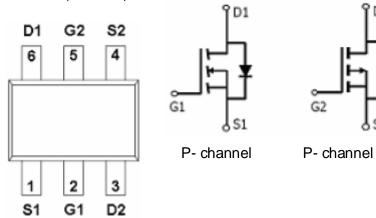
These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where high-side switching, low in-line power loss, and resistance to transients are needed.

Features

- P-Channel
 - -20V/1.0A, $R_{DS(ON)} = 520m\Omega@VGS = -4.5V$
 - -20V/0.8A, $R_{DS(ON)} = 700 \text{m}\Omega @VGS = -2.5V$
 - $-20V/0.7A, R_{DS(ON)} = 950m\Omega@VGS = -1.8V$
- Super high density cell design for extremely low R_{DS (ON)}
- Exceptional on-resistance and maximum DC current capability

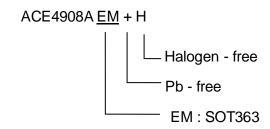
APPLICATIONS

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter


Dual P-Channel Enhancement Mode MOSFET

Absolute Maximum Ratings

Parameter		Symbol	Max	Unit	
Drain-Source Voltage		V_{DSS}	-20	٧	
Gate-Source Voltage		V_{GSS}	±12	V	
Continuous Drain Current(T _J =150°ℂ)	T _A =25 °C		-1.0	Α	
	T _A =70 °C	l _D	-0.7	A	
Pulse Drain Current	I _{DM}	-3	Α		
Continuous Source Current(Diode Conduction)		Is	-0.6		
Power Dissipation	T _A =25 °C	P _D	0.35	W	
	T _A =70 °C	ΓD	0.19	VV	
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	°C	
Thermal Resistance-Junction to Ambient	T ≤ 10sec	Ь	360	°C/W	
	Steady State	$R_{\theta JA}$	400	C/VV	


Packaging Type

SOT-363(SC-70-6)

Pin	Symbol	Description		
1	S1	Source 1		
2	G1	Gate 1		
3	D2	Drain 2		
4	S2	Source 2		
5	G2	Gate 2		
6	D1	Drain1		

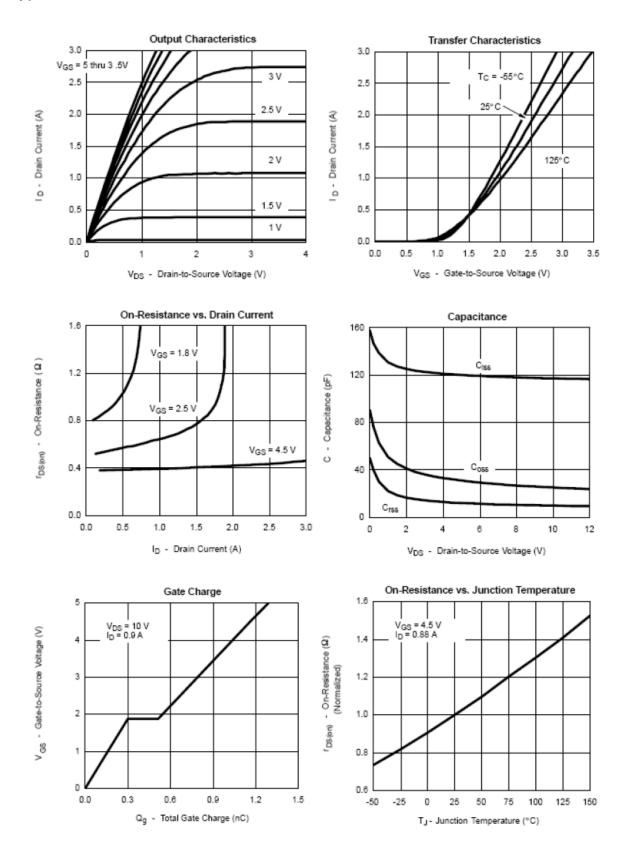
Ordering information

Dual P-Channel Enhancement Mode MOSFET

Electrical Characteristics

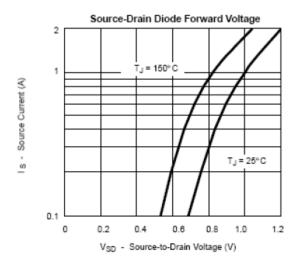
T_A=25 °C unless otherwise noted

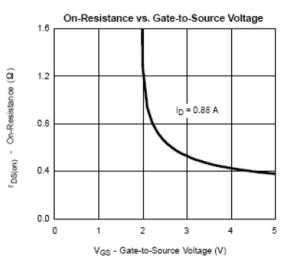
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_D =-250uA	-20			V	
Gate Threshold Voltage	$V_{GS(th)}$	VDS=VGS,ID=-250uA	-0.35		-0.8	V	
Gate Leakage Current	I _{GSS}	$V_{DS}=0V$, $V_{GS}=\pm 12V$			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	uA	
		V_{DS} =-20V, V_{GS} =0V, T_J =55 $^{\circ}$ C			-5	uA	
On-State Drain Current	I _{D(on)}	$V_{DS} \le -4.5 \text{ V}, V_{GS} = -5 \text{ V}$	-2			Α	
Drain-Source On-State Resistance		V_{GS} =-4.5V, I_{D} =-1.0A		0.42	0.52		
	R _{DS(ON)}	V _{GS} =-2.5V, I _D =-0.8A		0.58	0.70	Ω	
		V_{GS} =-1.8V, I_{D} =-0.5A		0.75	0.95		
Forward Transconductance	g FS	V_{DS} =-10V, I_{D} =-1.0A		1.5		S	
Diode Forward Voltage	V_{SD}	I_S =-0.5A , V_{GS} =0V		-0.8	-1.2	V	
Switching							
Total Gate Charge	Q_g	V _{DS} =-10V, V _{GS} =-4.5V,		1.5	2.0		
Gate-Source Charge	Q_{gs}	I_{D} =-10V, V_{GS} =-4.5V, I_{D} =-0.88A		0.3		nC	
Gate-Drain Charge	Q_{gd}	10- 0.00/ (0.2			
Turn-On Delay Time	t _{d(on)}			18	30		
Turn-On Rise Time	t _r	V_{GNE} =-4.5V, V_{DD} =-10V,		25	40	ne	
Turn-Off Delay Time	$t_{d(off)}$	$R_L=20\Omega$, $R_G=6\Omega$, $I_D=-0.5A$		15	45	ns	
Turn- Off Rise Time	t _f			12	20		
		Dynamic					
Input Capacitance	C _{iss}			145			
Output Capacitance	C _{oss}	V_{DS} =-10V, V_{GS} =0V,f=1MHz		25		pF	
Reverse Transfer Capacitance	C_{rss}			10			

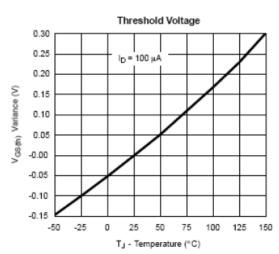

Note: A. The value of $R_{\theta JA}$ is measured with the device mounted on 1*1in FR-4 board with 2oz Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

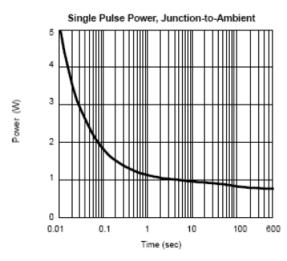
- B. Repetitive rating, pulse width limited by junction temperature.
- C. The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

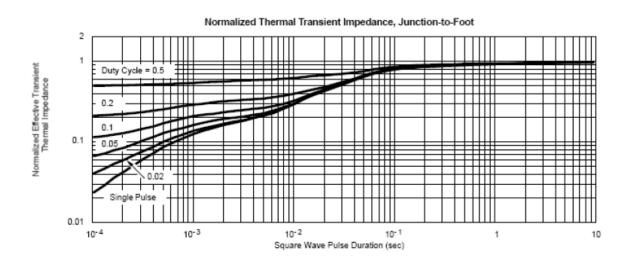
Dual P-Channel Enhancement Mode MOSFET

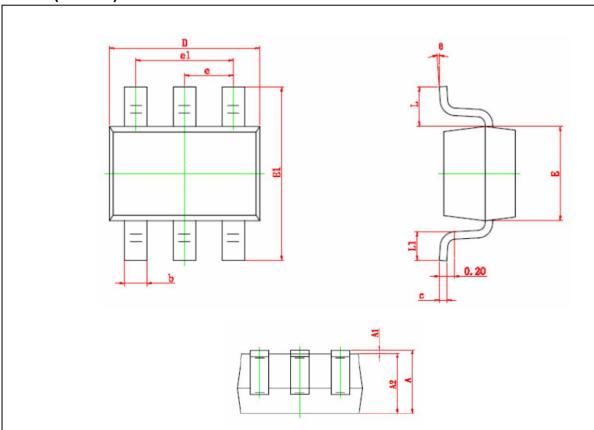

Typical Performance Characteristics






Dual P-Channel Enhancement Mode MOSFET


Typical Performance Characteristics



Dual P-Channel Enhancement Mode MOSFET

Packing Information

SOT363(SC-70-6)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650) TYP	0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

ACE4908A Dual P-Channel Enhancement Mode MOSFET

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/